482 research outputs found

    Reduced telomere length is associated with fibrotic joint disease suggesting that impaired telomere repair contributes to joint fibrosis

    Get PDF
    OBJECTIVE: Joint fibrosis affects many synovial joints (including hip, knee and shoulder) causing stiffness and pain. The mechanism of joint fibrosis remains unknown, although genetic factors may contribute. Defects in maintenance of telomere length resulting from impaired telomere repair have been shown to cause lung and liver fibrotic disease. Here we tested the hypothesis that joint fibrosis and other soft tissue fibrotic conditions are also associated with telomere length. PATIENTS AND METHODS: 5,200 participants in the TwinsUK registry had data on telomere length (measured by qPCR) and the traits of interest (hip and knee stiffness, total joint replacement (TJR, hip or knee) and fibrotic conditions (Dupuytren's disease, frozen shoulder). RESULTS: Multivariable logistic regression analyses showed a significant association between telomere length and fibrotic conditions (hip stiffness, knee stiffness and frozen shoulder, p = ≀0.002) even after taking age into account. No association was found between TJR and telomere length. CONCLUSION: These findings suggest that defects in telomere repair contribute to joint fibrosis, and that fibrosis shares a common mechanistic pathway in different organs. Therapeutic strategies to combat telomere shortening may offer novel treatments for fibrotic joint disease

    The role of interleukin-1Ξ² as a predictive biomarker and potential therapeutic target during clinical ex vivo lung perfusion

    Get PDF
    BACKGROUND: Extended criteria donor lungs deemed unsuitable for immediate transplantation can be reconditioned using ex vivo lung perfusion (EVLP). Objective identification of which donor lungs can be successfully reconditioned and will function well post-operatively has not been established. This study assessed the predictive value of markers of inflammation and tissue injury in donor lungs undergoing EVLP as part of the DEVELOP-UK study. METHODS: Longitudinal samples of perfusate, bronchoalveolar lavage, and tissue from 42 human donor lungs undergoing clinical EVLP assessments were analyzed for markers of inflammation and tissue injury. Levels were compared according to EVLP success and post-transplant outcomes. Neutrophil adhesion to human pulmonary microvascular endothelial cells (HPMECs) conditioned with perfusates from EVLP assessments was investigated on a microfluidic platform. RESULTS: The most effective markers to differentiate between in-hospital survival and non-survival post-transplant were perfusate interleukin (IL)-1Ξ² (area under the curve = 1.00, p = 0.002) and tumor necrosis factor-Ξ± (area under the curve = 0.95, p = 0.006) after 30 minutes of EVLP. IL-1Ξ² levels in perfusate correlated with upregulation of intracellular adhesion molecule-1 in donor lung vasculature (R(2) = 0.68, p < 0.001) and to a lesser degree upregulation of intracellular adhesion molecule-1 (R(2) = 0.30, p = 0.001) and E-selectin (R(2) = 0.29, p = 0.001) in conditioned HPMECs and neutrophil adhesion to conditioned HPMECs (R(2) = 0.33, p < 0.001). Neutralization of IL-1Ξ² in perfusate effectively inhibited neutrophil adhesion to conditioned HPMECs (91% reduction, p = 0.002). CONCLUSIONS: Donor lungs develop a detectable and discriminatory pro-inflammatory signature in perfusate during EVLP. Blocking the IL-1Ξ² pathway during EVLP may reduce endothelial activation and subsequent neutrophil adhesion on reperfusion; this requires further investigation in vivo

    Klebsiella pneumoniae is able to trigger epithelial-mesenchymal transition process in cultured airway epithelial cells

    Get PDF
    The ability of some bacterial pathogens to activate Epithelial-Mesenchymal Transition normally is a consequence of the persistence of a local chronic inflammatory response or depends on a direct interaction of the pathogens with the host epithelial cells. In this study we monitored the abilities of the K. pneumoniae to activate the expression of genes related to EMT-like processes and the occurrence of phenotypic changes in airway epithelial cells during the early steps of cell infection. We describe changes in the production of intracellular reactive oxygen species and increased HIF-1Ξ± mRNA expression in cells exposed to K. pneumoniae infection. We also describe the upregulation of a set of transcription factors implicated in the EMT processes, such as Twist, Snail and ZEB, indicating that the morphological changes of epithelial cells already appreciable after few hours from the K. pneumoniae infection are tightly regulated by the activation of transcriptional pathways, driving epithelial cells to EMT. These effects appear to be effectively counteracted by resveratrol, an antioxidant that is able to exert a sustained scavenging of the intracellular ROS. This is the first report indicating that strains of K. pneumoniae may promote EMT-like programs through direct interaction with epithelial cells without the involvement of inflammatory cells

    Ingraft chimerism in lung transplantation - a study in a porcine model of obliterative bronchiolitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bronchial epithelium is a target of the alloimmune response in lung transplantation, and intact epithelium may protect allografts from rejection and obliterative bronchiolitis (OB). Herein we study the influence of chimerism on bronchial epithelium and OB development in pigs.</p> <p>Methods</p> <p>A total of 54 immunosuppressed and unimmunosuppressed bronchial allografts were serially obtained 2-90 days after transplantation. Histology (H&E) was assessed and the fluorescence in situ hybridization (FISH) method for Y chromosomes using pig-specific DNA-label was used to detect recipient derived cells in graft epithelium and bronchial wall, and donor cell migration to recipient organs. Ingraft chimerism was studied by using male recipients with female donors, whereas donor cell migration to recipient organs was studied using female recipients with male donors.</p> <p>Results</p> <p>Early appearance of recipient-derived cells in the airway epithelium appeared predictive of epithelial destruction (<it>R </it>= 0.610 - 0.671 and <it>p </it>< 0.05) and of obliteration of the bronchial lumen (<it>R </it>= 0.698 and <it>p </it>< 0.01). All allografts with preserved epithelium showed epithelial chimerism throughout the follow-up. Antirejection medication did not prevent, but delayed the appearance of Y chromosome positive cells in the epithelium (<it>p </it>< 0.05), or bronchial wall (<it>p </it>< 0.05).</p> <p>Conclusions</p> <p>In this study we demonstrate that early appearance of Y chromosomes in the airway epithelium predicts features characteristic of OB. Chimerism occurred in all allografts, including those without features of OB. Therefore we suggest that ingraft chimerism may be a mechanism involved in the repair of alloimmune-mediated tissue injury after transplantation.</p

    Differentiated transplant derived airway epithelial cell cytokine secretion is not regulated by cyclosporine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While lung transplantation is an increasingly utilized therapy for advanced lung diseases, chronic rejection in the form of Bronchiolitis Obliterans Syndrome (BOS) continues to result in significant allograft dysfunction and patient mortality. Despite correlation of clinical events with eventual development of BOS, the causative pathophysiology remains unknown. Airway epithelial cells within the region of inflammation and fibrosis associated with BOS may have a participatory role.</p> <p>Methods</p> <p>Transplant derived airway epithelial cells differentiated in air liquid interface culture were treated with IL-1Ξ² and/or cyclosporine, after which secretion of cytokines and growth factor and gene expression for markers of epithelial to mesenchymal transition were analyzed.</p> <p>Results</p> <p>Secretion of IL-6, IL-8, and TNF-Ξ±, but not TGF-Ξ²1, was increased by IL-1Ξ² stimulation. In contrast to previous studies using epithelial cells grown in submersion culture, treatment of differentiated cells in ALI culture with cyclosporine did not elicit cytokine or growth factor secretion, and did not alter IL-6, IL-8, or TNF-Ξ± production in response to IL-1Ξ² treatment. Neither IL-1Ξ² nor cyclosporine elicited expression of markers of the epithelial to mesenchymal transition E-cadherin, EDN-fibronectin, and Ξ±-smooth muscle actin.</p> <p>Conclusion</p> <p>Transplant derived differentiated airway epithelial cell IL-6, IL-8, and TNF-Ξ± secretion is not regulated by cyclosporine <it>in vitro</it>; these cells thus may participate in local inflammatory responses in the setting of immunosuppression. Further, treatment with IL-1Ξ² did not elicit gene expression of markers of epithelial to mesenchymal transition. These data present a model of differentiated airway epithelial cells that may be useful in understanding epithelial participation in airway inflammation and allograft rejection in lung transplantation.</p

    Role of Interaction and Nucleoside Diphosphate Kinase B in Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator Function by cAMP-Dependent Protein Kinase A

    Get PDF
    Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent protein kinase A (PKA) and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2) forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation. Furthermore, an NDPK-B derived peptide (but not its NDPK-A equivalent) disrupts the NDPK-B/CFTR complex in vitro (19-mers comprising amino acids 36-54 from NDPK-B or NDPK-A). Overlay (Far-Western) and Surface Plasmon Resonance (SPR) analysis both demonstrate that NDPK-B binds CFTR within its first nucleotide binding domain (NBD1, CFTR amino acids 351-727). Analysis of chloride currents reflective of CFTR or outwardly rectifying chloride channels (ORCC, DIDS-sensitive) showed that the 19-mer NDPK-B peptide (but not its NDPK-A equivalent) reduced both chloride conductances. Additionally, the NDPK-B (but not NDPK-A) peptide also attenuated acetylcholine-induced intestinal short circuit currents. In silico analysis of the NBD1/NDPK-B complex reveals an extended interaction surface between the two proteins. This binding zone is also target of the 19-mer NDPK-B peptide, thus confirming its capability to disrupt NDPK-B/CFTR complex. We propose that NDPK-B forms part of the complex that controls chloride currents in epithelia

    Molecular analysis of the vaginal response to estrogens in the ovariectomized rat and postmenopausal woman

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vaginal atrophy (VA) is the thinning of the vaginal epithelial lining, typically the result of lowered estrogen levels during menopause. Some of the consequences of VA include increased susceptibility to bacterial infection, pain during sexual intercourse, and vaginal burning or itching. Although estrogen treatment is highly effective, alternative therapies are also desired for women who are not candidates for post-menopausal hormone therapy (HT). The ovariectomized (OVX) rat is widely accepted as an appropriate animal model for many estrogen-dependent responses in humans; however, since reproductive biology can vary significantly between mammalian systems, this study examined how well the OVX rat recapitulates human biology.</p> <p>Methods</p> <p>We analyzed 19 vaginal biopsies from human subjects pre and post 3-month 17Ξ²-estradiol treated by expression profiling. Data were compared to transcriptional profiling generated from vaginal samples obtained from ovariectomized rats treated with 17Ξ²-estradiol for 6 hrs, 3 days or 5 days. The level of differential expression between pre- vs. post- estrogen treatment was calculated for each of the human and OVX rat datasets. Probe sets corresponding to orthologous rat and human genes were mapped to each other using NCBI Homologene.</p> <p>Results</p> <p>A positive correlation was observed between the rat and human responses to estrogen. Genes belonging to several biological pathways and GO categories were similarly differentially expressed in rat and human. A large number of the coordinately regulated biological processes are already known to be involved in human VA, such as inflammation, epithelial development, and EGF pathway activation.</p> <p>Conclusion</p> <p>At the transcriptional level, there is evidence of significant overlap of the effects of estrogen treatment between the OVX rat and human VA samples.</p

    Application of functional genomics to primate endometrium: insights into biological processes

    Get PDF
    Endometrium is a dynamic tissue that responds on a cyclic basis to circulating levels of the ovarian-derived steroid hormones, estradiol and progesterone. Functional genomics has enabled a global approach to understanding gene regulation in whole endometrial tissue in the setting of a changing hormonal milieu. The proliferative phase of the cycle, under the influence of estradiol, has a preponderance of genes involved in DNA synthesis and cell cycle regulation. Interestingly, genes encoding ion channels and cell adhesion, as well as angiogenic factors, are also highly regulated in this phase of the cycle. After the LH surge, different gene expression profiles are uniquely observed in the early secretory, mid-secretory (window of implantation), and late secretory phases. The early secretory phase is notable for up-regulation of multiple genes and gene families involved in cellular metabolism, steroid hormone metabolism, as well as some secreted glycoproteins. The mid-secretory phase is characterized by multiple biological processes, including up-regulation of genes encoding secreted glycoproteins, immune response genes with a focus on innate immunity, and genes involved in detoxification mechanisms. In the late secretory phase, as the tissue prepares for desquamation, there is a marked up-regulation of an inflammatory response, along with matrix degrading enzymes, and genes involved in hemostasis, among others. This monograph reviews hormonal regulation of gene expression in this tissue and the molecular events occurring therein throughout the cycle derived from functional genomics analysis. It also highlights challenges encountered in using human endometrial tissue in translational research in this context

    The Transient Receptor Potential Ion Channel TRPV6 Is Expressed at Low Levels in Osteoblasts and Has Little Role in Osteoblast Calcium Uptake

    Get PDF
    Background: TRPV6 ion channels are key mediators of regulated transepithelial absorption of Ca2+ within the small intestine. Trpv6-/- mice were reported to have lower bone density than wild-type littermates and significant disturbances in calcium homeostasis that suggested a role for TRPV6 in osteoblasts during bone formation and mineralization. TRPV6 and molecules related to transepithelial Ca2+ transport have been reported to be expressed at high levels in human and mouse osteoblasts. Results: Transmembrane ion currents in whole cell patch clamped SaOS-2 osteoblasts did not show sensitivity to ruthenium red, an inhibitor of TRPV5/6 ion channels, and 45Ca uptake was not significantly affected by ruthenium red in either SaOS-2 (Pβ€Š=β€Š0.77) or TE-85 (Pβ€Š=β€Š0.69) osteoblastic cells. In contrast, ion currents and 45Ca uptake were both significantly affected in a human bronchial epithelial cell line known to express TRPV6. TRPV6 was expressed at lower levels in osteoblastic cells than has been reported in some literature. In SaOS-2 TRPV6 mRNA was below the assay detection limit; in TE-85 TRPV6 mRNA was detected at 6.90Β±1.9 Γ— 10βˆ’5 relative to B2M. In contrast, TRPV6 was detected at 7.7Β±3.0 Γ— 10βˆ’2 and 2.38Β±0.28 Γ— 10βˆ’4 the level of B2M in human carcinoma-derived cell lines LNCaP and CaCO-2 respectively. In murine primary calvarial osteoblasts TRPV6 was detected at 3.80Β±0.24 Γ— 10βˆ’5 relative to GAPDH, in contrast with 4.3Β±1.5 Γ— 10βˆ’2 relative to GAPDH in murine duodenum. By immunohistochemistry, TRPV6 was expressed mainly in myleocytic cells of the murine bone marrow and was observed only at low levels in murine osteoblasts, osteocytes or growth plate cartilage. Conclusions: TRPV6 is expressed only at low levels in osteoblasts and plays little functional role in osteoblastic calcium uptake
    • …
    corecore