913 research outputs found

    PDB42 Evaluating Short-Term Cost-Effectiveness Of Liraglutide Versus Oral Antidiabetic Drugs In Patients With Type 2 Diabetes In A Chinese Setting

    Get PDF
    http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000318916401344&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701EconomicsHealth Care Sciences & ServicesHealth Policy & ServicesSCI(E)SSCI0MEETING ABSTRACT3A163-A1631

    Eta absorption by mesons

    Full text link
    Using the [SU(3)L×SU(3)R]global×[SU(3)V]local[SU(3)_{\mathrm{L}} \times SU(3)_{\mathrm{R}}]_{\mathrm{global}% }\times [SU(3)_V]_{\mathrm{local}} chiral Lagrangian with hidden local symmetry, we evaluate the cross sections for the absorption of eta meson (η% \eta) by pion (π\pi), rho (ρ\rho), omega (ω\omega), kaon (KK), and kaon star (KK^*) in the tree-level approximation. With empirical masses and coupling constants as well as reasonable values for the cutoff parameter in the form factors at interaction vertices, we find that most cross sections are less than 1 mb, except the reactions ρηKKˉ(KˉK)\rho\eta\to K\bar K^*(\bar KK^*), ωηKKˉ(KˉK)\omega\eta\to K\bar K^*(\bar KK^*), KηρKK^*\eta\to\rho K, and KηωKK^*\eta\to\omega K, which are a few mb, and the reactions πηKKˉ\pi\eta\to K\bar K and KηπKK\eta\to\pi K, which are more than 10 mb. Including these reactions in a kinetic model based on a schematic hydrodynamic description of relativistic heavy ion collisions, we find that the abundance of eta mesons likely reaches chemical equilibrium with other hadrons in nuclear collisions at the Relativistic Heavy Ion Collider.Comment: 29 pages, 10 figures, version to appear in Nucl. Phys.

    A Co-axial Multi-tube Heat Exchanger Applicable for a Geothermal ORC Power Plant

    Get PDF
    AbstractThe study proposes a Co-axial multi-tube heat exchanger (CMTHE) applicable to geothermal heat extraction. The heat exchanger is integrated with a 50kW geothermal ORC power plant having a working fluid of R-245fa. Two field tests were performed to examine the system response of the ORC system subject to change of CMTHE. In case 1 where the flow rate in the shell-side of CMTHE is maintained, the pressure variation in the shell-side of CMTHE casts minor variations on heat extraction, ORC power generation, and ORC efficiency during the transient. Moreover, the effect of pressure has barely any influence of the final states of heat extraction, ORC power generation, and ORC efficiency. In case 2 where the pressure is preserved in the CMTHE, it is found that a decrease of flow rate in the CMTHE results in degradation of heat extraction, ORC power generation and ORC system efficiency. On the contrary, increasing the flow rate in the CMTHE leads to a rise of heat extraction, ORC power generation and ORC system efficiency. Unlike that in case 1, the effect of flow rate has a detectable effect on the final states of heat extraction, ORC power generation, and ORC efficiency

    Charmed Exotics in Heavy Ion Collisions

    Get PDF
    Based on the color-spin interaction in diquarks, we argue that charmed multiquark hadrons are likely to exist. Because of the appreciable number of charm quarks produced in central nucleus-nucleus collisions at ultrarelativistic energies, production of charmed multiquark hadrons is expected to be enhanced in these collisions. Using both the quark coalescence model and the statistical hadronization model, we estimate the yield of charmed tetraquark meson TccT_{cc} and pentaquark baryon Θcs\Theta_{cs} in heavy ion collisions at RHIC and LHC. We further discuss the decay modes of these charmed exotic hadrons in order to facilitate their detections in experiments

    Picosecond optospintronic tunnel junctions

    Get PDF
    Perpendicular magnetic tunnel junctions (p-MTJs), as building blocks of spintronic devices, offer substantial potential for next-generation nonvolatile memory applications. However, their performance is fundamentally hindered by a subnanosecond speed limitation, due to spin-polarized-current-based mechanisms. Here, we report an optospintronic tunnel junction (OTJ) device with a picosecond switching speed, ultralow power, high magnetoresistance ratio, high thermal stability, and nonvolatility. This device incorporates an all-optically switchable Gd/Co bilayer coupled to a CoFeB/MgO-based p-MTJ, by subtle tuning of Ruderman–Kittel–Kasuya–Yosida interaction. An all-optical “writing” of the OTJ within 10 ps is experimentally demonstrated by time-resolved measurements. The device shows a reliable resistance “readout” with a relatively high tunnel magnetoresistance of 34.7%, as well as promising scaling toward the nanoscale with ultralow power consumption (<100 fJ for a 50-nm-sized bit). Our proof-of-concept demonstration of OTJ might ultimately pave the way toward a new category of integrated spintronic–photonic memory devices

    EGAM Induced by Energetic-electrons and Nonlinear Interactions among EGAM, BAEs and Tearing Modes in a Toroidal Plasma

    Full text link
    In this letter, it is reported that the first experimental results are associated with the GAM induced by energetic electrons (eEGAM) in HL-2A Ohmic plasma. The energetic-electrons are generated by parallel electric fields during magnetic reconnection associated with tearing mode (TM). The eEGAM localizes in the core plasma, i.e. in the vicinity of q=2 surface, and is very different from one excited by the drift-wave turbulence in the edge plasma. The analysis indicated that the eEGAM is provided with the magnetic components, whose intensities depend on the poloidal angles, and its mode numbers are jm/nj=2/0. Further, there exist intense nonlinear interactions among eEGAM, BAEs and strong tearing modes (TMs). These new findings shed light on the underlying physics mechanism for the excitation of the low frequency (LF) Alfv\'enic and acoustic uctuations.Comment: 5 pages,4 figure

    Uptake of gases in bundles of carbon nanotubes

    Full text link
    Model calculations are presented which predict whether or not an arbitrary gas experiences significant absorption within carbon nanotubes and/or bundles of nanotubes. The potentials used in these calculations assume a conventional form, based on a sum of two-body interactions with individual carbon atoms; the latter employ energy and distance parameters which are derived from empirical combining rules. The results confirm intuitive expectation that small atoms and molecules are absorbed within both the interstitial channels and the tubes, while large atoms and molecules are absorbed almost exclusively within the tubes.Comment: 9 pages, 12 figures, submitted to PRB Newer version (8MAR2K). There was an error in the old one (23JAN2K). Please download thi

    Coulomb blockade of strongly coupled quantum dots studied via bosonization of a channel with a finite barrier

    Full text link
    A pair of quantum dots, coupled through a point contact, can exhibit Coulomb blockade effects that reflect an oscillatory term in the dots' total energy whose value depends on whether the total number of electrons on the dots is even or odd. The effective energy associated with this even-odd alternation is reduced, relative to the bare Coulomb blockade energy for uncoupled dots, by a factor (1-f) that decreases as the interdot coupling is increased. When the transmission coefficient for interdot electronic motion is independent of energy and the same for all channels within the point contact (which are assumed uncoupled), the factor (1-f) takes on a universal value determined solely by the number of channels and the dimensionless conductance g of each individual channel. This paper studies corrections to the universal value of (1-f) that result when the transmission coefficent varies over energy scales of the size of the bare Coulomb blockade energy. We consider a model in which the point contact is described by a single orbital channel containing a parabolic barrier potential, and we calculate the leading correction to (1-f) for one-channel (spin-split) and two-channel (spin-degenerate) point contacts in the limit where the single orbital channel is almost completely open. By generalizing a previously used bosonization technique, we find that, for a given value of the dimensionless conductance g, the value of (1-f) is increased relative to its value for a zero-thickness barrier, but the absolute value of the increase is small in the region where our calculations apply.Comment: 13 pages, 3 Postscript figure
    corecore