1,193 research outputs found

    Crosstalk between MSH2–MSH3 and polβ promotes trinucleotide repeat expansion during base excision repair

    Get PDF
    Studies in knockout mice provide evidence that MSH2–MSH3 and the BER machinery promote trinucleotide repeat (TNR) expansion, yet how these two different repair pathways cause the mutation is unknown. Here we report the first molecular crosstalk mechanism, in which MSH2–MSH3 is used as a component of the BER machinery to cause expansion. On its own, pol β fails to copy TNRs during DNA synthesis, and bypasses them on the template strand to cause deletion. Remarkably, MSH2–MSH3 not only stimulates pol β to copy through the repeats but also enhances formation of the flap precursor for expansion. Our results provide direct evidence that MMR and BER, operating together, form a novel hybrid pathway that changes the outcome of TNR instability from deletion to expansion during the removal of oxidized bases. We propose that cells implement crosstalk strategies and share machinery when a canonical pathway is ineffective in removing a difficult lesion

    Can acclimation of thermal tolerance, in adults and across generations, act as a buffer against climate change in tropical marine ectotherms?

    Get PDF
    Thermal acclimation capacity was investigated in adults of three tropical marine invertebrates, the subtidal barnacle Striatobalanus amaryllis, the intertidal gastropod Volegalea cochlidium and the intertidal barnacle Amphibalanus amphitrite. To test the relative importance of transgenerational acclimation, the developmental acclimation capacity of A. amphitrite was investigated in F1 and F2 generations reared at a subset of the same incubation temperatures. The increase in CTmax (measured through loss of key behavioural metrics) of F0 adults across the incubation temperature range 25.4–33.4 °C was low: 0.00 °C (V. cochlidium), 0.05 °C (S. amaryllis) and 0.06 °C (A. amphitrite) per 1 °C increase in incubation temperature (the acclimation response ratio; ARR). Although the effect of generation was not significant, across the incubation temperature range of 29.4–33.4 °C, the increase in CTmax in the F1 (0.30 °C) and F2 (0.15 °C) generations of A. amphitrite was greater than in the F0 (0.10 °C). These correspond to ARR's of 0.03 °C (F0), 0.08 °C (F1) and 0.04 °C (F2), respectively. The variability in CTmax between individuals in each treatment was maintained across generations, despite the high mortality of progeny. Further research is required to investigate the potential for transgenerational acclimation to provide an extra buffer for tropical marine species facing climate warming

    Post-Newtonian SPH calculations of binary neutron star coalescence. I. Method and first results

    Get PDF
    We present the first results from our Post-Newtonian (PN) Smoothed Particle Hydrodynamics (SPH) code, which has been used to study the coalescence of binary neutron star (NS) systems. The Lagrangian particle-based code incorporates consistently all lowest-order (1PN) relativistic effects, as well as gravitational radiation reaction, the lowest-order dissipative term in general relativity. We test our code on sequences of single NS models of varying compactness, and we discuss ways to make PN simulations more relevant to realistic NS models. We also present a PN SPH relaxation procedure for constructing equilibrium models of synchronized binaries, and we use these equilibrium models as initial conditions for our dynamical calculations of binary coalescence. Though unphysical, since tidal synchronization is not expected in NS binaries, these initial conditions allow us to compare our PN work with previous Newtonian results. We compare calculations with and without 1PN effects, for NS with stiff equations of state, modeled as polytropes with Γ=3\Gamma=3. We find that 1PN effects can play a major role in the coalescence, accelerating the final inspiral and causing a significant misalignment in the binary just prior to final merging. In addition, the character of the gravitational wave signal is altered dramatically, showing strong modulation of the exponentially decaying waveform near the end of the merger. We also discuss briefly the implications of our results for models of gamma-ray bursts at cosmological distances.Comment: RevTeX, 37 pages, 17 figures, to appear in Phys. Rev. D, minor corrections onl

    Fecal Viral Load and Norovirus-associated Gastroenteritis

    Get PDF
    We report the median cDNA viral load of norovirus genogroup II is >100-fold higher than that of genogroup I in the fecal specimens of patients with norovirus-associated gastroenteritis. We speculate that increased cDNA viral load accounts for the higher transmissibility of genogroup II strains through the fecal-oral route

    Probing Ion-Ion and Electron-Ion Correlations in Liquid Metals within the Quantum Hypernetted Chain Approximation

    Full text link
    We use the Quantum Hypernetted Chain Approximation (QHNC) to calculate the ion-ion and electron-ion correlations for liquid metallic Li, Be, Na, Mg, Al, K, Ca, and Ga. We discuss trends in electron-ion structure factors and radial distribution functions, and also calculate the free-atom and metallic-atom form-factors, focusing on how bonding effects affect the interpretation of X-ray scattering experiments, especially experimental measurements of the ion-ion structure factor in the liquid metallic phase.Comment: RevTeX, 19 pages, 7 figure

    Comparison of advanced gravitational-wave detectors

    Get PDF
    We compare two advanced designs for gravitational-wave antennas in terms of their ability to detect two possible gravitational wave sources. Spherical, resonant mass antennas and interferometers incorporating resonant sideband extraction (RSE) were modeled using experimentally measurable parameters. The signal-to-noise ratio of each detector for a binary neutron star system and a rapidly rotating stellar core were calculated. For a range of plausible parameters we found that the advanced LIGO interferometer incorporating RSE gave higher signal-to-noise ratios than a spherical detector resonant at the same frequency for both sources. Spheres were found to be sensitive to these sources at distances beyond our galaxy. Interferometers were sensitive to these sources at far enough distances that several events per year would be expected

    Mathematical analysis of the two dimensional active exterior cloaking in the quasistatic regime

    Full text link
    We design a device that generates fields canceling out a known probing field inside a region to be cloaked while generating very small fields far away from the device. The fields we consider satisfy the Laplace equation, but the approach remains valid in the quasistatic regime in a homogeneous medium. We start by relating the problem of designing an exterior cloak in the quasistatic regime to the classic problem of approximating a harmonic function with harmonic polynomials. An explicit polynomial solution to the problem was given earlier in [Phys. Rev. Lett. 103 (2009), 073901]. Here we show convergence of the device field to the field needed to perfectly cloak an object. The convergence region limits the size of the cloaked region, and the size and position of the device.Comment: submitted to Analysis and Mathematical Physic

    Search for the decay K+ to pi+ gamma gamma in the pi+ momentum region P>213 MeV/c

    Full text link
    We have searched for the K+ to pi+ gamma gamma decay in the kinematic region with pi+ momentum close to the end point. No events were observed, and the 90% confidence-level upper limit on the partial branching ratio was obtained, B(K+ to pi+ gamma gamma, P>213 MeV/c) < 8.3 x 10-9 under the assumption of chiral perturbation theory including next-to-leading order ``unitarity'' corrections. The same data were used to determine an upper limit on the K+ to pi+ gamma branching ratio of 2.3 x 10-9 at the 90% confidence level.Comment: 15 pages, 3 figures; no change in the results, accepted for publication in Physics Letters

    Direct Measurements of the Branching Fractions for D0→K−e+νeD^0 \to K^-e^+\nu_e and D0→π−e+νeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0→K−e+νeD^0 \to K^-e ^+\nu_e and D0→π−e+νeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0→K−e+νeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0→π−e+νeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0→K−e+νe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0→π−e+νe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be ∣f+K(0)∣=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and ∣f+π(0)∣=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be ∣f+π(0)/f+K(0)∣=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure

    Partial Wave Analysis of J/ψ→γ(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/ψ→γ(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The K∗Kˉ∗K^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0−+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width ∼500\sim 500 MeV. There is further evidence for a 2−+2^{-+} component peaking at 2.55 GeV. The non-K∗Kˉ∗K^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from K∗K∗ˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL
    • …
    corecore