26 research outputs found

    Hastings-Levitov aggregation in the small-particle limit

    Get PDF
    We establish some scaling limits for a model of planar aggregation. The model is described by the composition of a sequence of independent and identically distributed random conformal maps, each corresponding to the addition of one particle. We study the limit of small particle size and rapid aggregation. The process of growing clusters converges, in the sense of Caratheodory, to an inflating disc. A more refined analysis reveals, within the cluster, a tree structure of branching fingers, whose radial component increases deterministically with time. The arguments of any finite sample of fingers, tracked inwards, perform coalescing Brownian motions. The arguments of any finite sample of gaps between the fingers, tracked outwards, also perform coalescing Brownian motions. These properties are closely related to the evolution of harmonic measure on the boundary of the cluster, which is shown to converge to the Brownian web

    Linear and non linear response in the aging regime of the 1D trap model

    Full text link
    We investigate the behaviour of the response function in the one dimensional trap model using scaling arguments that we confirm by numerical simulations. We study the average position of the random walk at time tw+t given that a small bias h is applied at time tw. Several scaling regimes are found, depending on the relative values of t, tw and h. Comparison with the diffusive motion in the absence of bias allows us to show that the fluctuation dissipation relation is, in this case, valid even in the aging regime.Comment: 5 pages, 3 figures, 3 references adde

    Phase Transition in Ferromagnetic Ising Models with Non-Uniform External Magnetic Fields

    Full text link
    In this article we study the phase transition phenomenon for the Ising model under the action of a non-uniform external magnetic field. We show that the Ising model on the hypercubic lattice with a summable magnetic field has a first-order phase transition and, for any positive (resp. negative) and bounded magnetic field, the model does not present the phase transition phenomenon whenever lim infhi>0\liminf h_i> 0, where h=(hi)iZd{\bf h} = (h_i)_{i \in \Z^d} is the external magnetic field.Comment: 11 pages. Published in Journal of Statistical Physics - 201

    On Bootstrap Percolation in Living Neural Networks

    Full text link
    Recent experimental studies of living neural networks reveal that their global activation induced by electrical stimulation can be explained using the concept of bootstrap percolation on a directed random network. The experiment consists in activating externally an initial random fraction of the neurons and observe the process of firing until its equilibrium. The final portion of neurons that are active depends in a non linear way on the initial fraction. The main result of this paper is a theorem which enables us to find the asymptotic of final proportion of the fired neurons in the case of random directed graphs with given node degrees as the model for interacting network. This gives a rigorous mathematical proof of a phenomena observed by physicists in neural networks

    Trapping in the random conductance model

    Full text link
    We consider random walks on Zd\Z^d among nearest-neighbor random conductances which are i.i.d., positive, bounded uniformly from above but whose support extends all the way to zero. Our focus is on the detailed properties of the paths of the random walk conditioned to return back to the starting point at time 2n2n. We show that in the situations when the heat kernel exhibits subdiffusive decay --- which is known to occur in dimensions d4d\ge4 --- the walk gets trapped for a time of order nn in a small spatial region. This shows that the strategy used earlier to infer subdiffusive lower bounds on the heat kernel in specific examples is in fact dominant. In addition, we settle a conjecture concerning the worst possible subdiffusive decay in four dimensions.Comment: 21 pages, version to appear in J. Statist. Phy

    Metastable behavior for bootstrap percolation on regular trees

    Get PDF
    We examine bootstrap percolation on a regular (b+1)-ary tree with initial law given by Bernoulli(p). The sites are updated according to the usual rule: a vacant site becomes occupied if it has at least theta occupied neighbors, occupied sites remain occupied forever. It is known that, when b>theta>1, the limiting density q=q(p) of occupied sites exhibits a jump at some p_t=p_t(b,theta) in (0,1) from q_t:=q(p_t)p_t. We investigate the metastable behavior associated with this transition. Explicitly, we pick p=p_t+h with h>0 and show that, as h decreases to 0, the system lingers around the "critical" state for time order h^{-1/2} and then passes to fully occupied state in time O(1). The law of the entire configuration observed when the occupation density is q in (q_t,1) converges, as h tends to 0, to a well-defined measure.Comment: 10 pages, version to appear in J. Statist. Phy

    Sub-diffusion and localization in the one dimensional trap model

    Full text link
    We study a one dimensional generalization of the exponential trap model using both numerical simulations and analytical approximations. We obtain the asymptotic shape of the average diffusion front in the sub-diffusive phase. Our central result concerns the localization properties. We find the dynamical participation ratios to be finite, but different from their equilibrium counterparts. Therefore, the idea of a partial equilibrium within the limited region of space explored by the walk is not exact, even for long times where each site is visited a very large number of times. We discuss the physical origin of this discrepancy, and characterize the full distribution of dynamical weights. We also study two different two-time correlation functions, which exhibit different aging properties: one is `sub-aging' whereas the other one shows `full aging'; therefore two diverging time scales appear in this model. We give intuitive arguments and simple analytical approximations that account for these differences, and obtain new predictions for the asymptotic (short time and long time) behaviour of the scaling functions. Finally, we discuss the issue of multiple time scalings in this model.Comment: 20 pages, 15 figures, 1 reference adde

    The scaling limit geometry of near-critical 2D percolation

    No full text
    We analyze the geometry of scaling limits of near-critical 2D percolation, i.e., for p=pc+λδ1/νp=p_c+\lambda\delta^{1/\nu}, with ν=4/3\nu=4/3, as the lattice spacing δ0\delta \to 0. Our proposed framework extends previous analyses for p=pcp=p_c, based on SLE6SLE_6. It combines the continuum nonsimple loop process describing the full scaling limit at criticality with a Poissonian process for marking double (touching) points of that (critical) loop process. The double points are exactly the continuum limits of "macroscopically pivotal" lattice sites and the marked ones are those that actually change state as λ\lambda varies. This structure is rich enough to yield a one-parameter family of near-critical loop processes and their associated connectivity probabilities as well as related processes describing, e.g., the scaling limit of 2D minimal spanning trees.Comment: 21 pages, 7 figure
    corecore