31 research outputs found

    De Branges spaces and Krein's theory of entire operators

    Full text link
    This work presents a contemporary treatment of Krein's entire operators with deficiency indices (1,1)(1,1) and de Branges' Hilbert spaces of entire functions. Each of these theories played a central role in the research of both renown mathematicians. Remarkably, entire operators and de Branges spaces are intimately connected and the interplay between them has had an impact in both spectral theory and the theory of functions. This work exhibits the interrelation between Krein's and de Branges' theories by means of a functional model and discusses recent developments, giving illustrations of the main objects and applications to the spectral theory of difference and differential operators.Comment: 37 pages, no figures. The abstract was extended. Typographical errors were corrected. The bibliography style was change

    Dynamics of Shear-Transformation Zones in Amorphous Plasticity: Energetic Constraints in a Minimal Theory

    Full text link
    We use energetic considerations to deduce the form of a previously uncertain coupling term in the shear-transformation-zone (STZ) theory of plastic deformation in amorphous solids. As in the earlier versions of the STZ theory, the onset of steady deformation at a yield stress appears here as an exchange of dynamic stability between jammed and plastically deforming states. We show how an especially simple ``quasilinear'' version of this theory accounts qualitatively for many features of plasticity such as yielding, strain softening, and strain recovery. We also show that this minimal version of the theory fails to describe certain other phenomena, and argue that these limitations indicate needs for additional internal degrees of freedom beyond those included here.Comment: 19 pages, 6 figure

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure

    The Physics of the B Factories

    Get PDF

    Dyschondrosteosis

    No full text

    Achondroplasia

    No full text

    Diastrophic Dysplasia

    No full text
    corecore