19 research outputs found

    Determinant-Gravity: Cosmological implications

    Full text link
    We analyze the action d4xdetBgμν+CRμν\int d^4x \sqrt{\det||{\cal B} g_{\mu\nu}+ {\cal C} R_{\mu\nu}}|| as a possible alternative or addition to the Einstein gravity. Choosing a particular form of B(R)=R{\cal B}(R)= \sqrt {R} we can restore the Einstein gravity and, if B=m2{\cal B}=m^2, we obtain the cosmological constant term. Taking B=m2+B1R{\cal B} = m^2 + {\cal B}_1 R and expanding the action in 1/m2 1/m^2, we obtain as a leading term the Einstein Lagrangian with a cosmological constant proportional to m4m^4 and a series of higher order operators. In general case of non-vanishing B{\cal B} and C{\cal C} new cosmological solutions for the Robertson-Walker metric are obtained.Comment: revtex format, 5 pages,8 figures,references adde

    The universe formation by a space reduction cascade with random initial parameters

    Full text link
    In this paper we discuss the creation of our universe using the idea of extra dimensions. The initial, multidimensional Lagrangian contains only metric tensor. We have found many sets of the numerical values of the Lagrangian parameters corresponding to the observed low-energy physics of our universe. Different initial parameters can lead to the same values of fundamental constants by the appropriate choice of a dimensional reduction cascade. This result diminishes the significance of the search for the 'unique' initial Lagrangian. We also have obtained a large number of low-energy vacua, which is known as a 'landscape' in the string theory.Comment: 17 pages, 1 figur

    Conformal aspects of Palatini approach in Extended Theories of Gravity

    Full text link
    The debate on the physical relevance of conformal transformations can be faced by taking the Palatini approach into account to gravitational theories. We show that conformal transformations are not only a mathematical tool to disentangle gravitational and matter degrees of freedom (passing from the Jordan frame to the Einstein frame) but they acquire a physical meaning considering the bi-metric structure of Palatini approach which allows to distinguish between spacetime structure and geodesic structure. Examples of higher-order and non-minimally coupled theories are worked out and relevant cosmological solutions in Einstein frame and Jordan frames are discussed showing that also the interpretation of cosmological observations can drastically change depending on the adopted frame

    Black hole solutions in F(R) gravity with conformal anomaly

    Full text link
    In this paper, we consider F(R)=R+f(R)F(R)=R+f(R) theory instead of Einstein gravity with conformal anomaly and look for its analytical solutions. Depending on the free parameters, one may obtain both uncharged and charged solutions for some classes of F(R)F(R) models. Calculation of Kretschmann scalar shows that there is a singularity located at r=0r=0, which the geometry of uncharged (charged) solution is corresponding to the Schwarzschild (Reissner-Nordstr\"om) singularity. Further, we discuss the viability of our models in details. We show that these models can be stable depending on their parameters and in different epoches of the universe.Comment: 12 pages, one figur

    Non-minimal coupling of the scalar field and inflation

    Full text link
    We study the prescriptions for the coupling constant of a scalar field to the Ricci curvature of spacetime in specific gravity and scalar field theories. The results are applied to the most popular inflationary scenarios of the universe; their theoretical consistency and certain observational constraints are discussed.Comment: 23 pages, LaTex, no figures, to appear in Physical Review

    f(R,L_m) gravity

    Get PDF
    We generalize the f(R)f(R) type gravity models by assuming that the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar RR and of the matter Lagrangian LmL_m. We obtain the gravitational field equations in the metric formalism, as well as the equations of motion for test particles, which follow from the covariant divergence of the energy-momentum tensor. The equations of motion for test particles can also be derived from a variational principle in the particular case in which the Lagrangian density of the matter is an arbitrary function of the energy-density of the matter only. Generally, the motion is non-geodesic, and takes place in the presence of an extra force orthogonal to the four-velocity. The Newtonian limit of the equation of motion is also considered, and a procedure for obtaining the energy-momentum tensor of the matter is presented. The gravitational field equations and the equations of motion for a particular model in which the action of the gravitational field has an exponential dependence on the standard general relativistic Hilbert--Einstein Lagrange density are also derived.Comment: 6 pages, no figures; minor modifications, references added; accepted for publication in EPJ

    Homogeneous cosmologies in generalized modified gravity

    Full text link
    Dynamical system methods are used in the study of the stability of spatially flat homogeneous cosmologies within a large class of generalized modified gravity models in the presence of a relativistic matter-radiation fluid. The present approach can be considered as the generalization of previous works in which only F(R)F(R) cases were considered. Models described by an arbitrary function of all possible geometric invariants are investigated and general equations giving all critical points are derived.Comment: 13 pages, no figure

    Extended Theories of Gravity and their Cosmological and Astrophysical Applications

    Full text link
    We review Extended Theories of Gravity in metric and Palatini formalism pointing out their cosmological and astrophysical application. The aim is to propose an alternative approach to solve the puzzles connected to dark components.Comment: 44 pages, 11 figure
    corecore