46 research outputs found

    Gradient dynamics models for liquid films with soluble surfactant

    Get PDF
    In this paper we propose equations of motion for the dynamics of liquid films of surfactant suspensions that consist of a general gradient dynamics framework based on an underlying energy functional. This extends the gradient dynamics approach to dissipative non-equilibrium thin film systems with several variables, and casts their dynamic equations into a form that reproduces Onsager's reciprocity relations. We first discuss the general form of gradient dynamics models for an arbitrary number of fields and discuss simple well-known examples with one or two fields. Next, we develop the gradient dynamics (three field) model for a thin liquid film covered by soluble surfactant and discuss how it automatically results in consistent convective (driven by pressure gradients, Marangoni forces and Korteweg stresses), diffusive, adsorption/desorption, and evaporation fluxes. We then show that in the dilute limit, the model reduces to the well-known hydrodynamic form that includes Marangoni fluxes due to a linear equation of state. In this case the energy functional incorporates wetting energy, surface energy of the free interface (constant contribution plus an entropic term) and bulk mixing entropy. Subsequently, as an example, we show how various extensions of the energy functional result in consistent dynamical models that account for nonlinear equations of state, concentration-dependent wettability and surfactant and film bulk decomposition phase transitions. We conclude with a discussion of further possible extensions towards systems with micelles, surfactant adsorption at the solid substrate and bioactive behaviour

    Gradient dynamics models for liquid films with soluble surfactant

    Get PDF
    In this paper we propose equations of motion for the dynamics of liquid films of surfactant suspensions that consist of a general gradient dynamics framework based on an underlying energy functional. This extends the gradient dynamics approach to dissipative non-equilibrium thin film systems with several variables, and casts their dynamic equations into a form that reproduces Onsager's reciprocity relations. We first discuss the general form of gradient dynamics models for an arbitrary number of fields and discuss simple well-known examples with one or two fields. Next, we develop the gradient dynamics (three field) model for a thin liquid film covered by soluble surfactant and discuss how it automatically results in consistent convective (driven by pressure gradients, Marangoni forces and Korteweg stresses), diffusive, adsorption/desorption, and evaporation fluxes. We then show that in the dilute limit, the model reduces to the well-known hydrodynamic form that includes Marangoni fluxes due to a linear equation of state. In this case the energy functional incorporates wetting energy, surface energy of the free interface (constant contribution plus an entropic term) and bulk mixing entropy. Subsequently, as an example, we show how various extensions of the energy functional result in consistent dynamical models that account for nonlinear equations of state, concentration-dependent wettability and surfactant and film bulk decomposition phase transitions. We conclude with a discussion of further possible extensions towards systems with micelles, surfactant adsorption at the solid substrate and bioactive behaviour

    Disjoining Potential and Spreading of Thin Liquid Layers in the Diffuse Interface Model Coupled to Hydrodynamics

    Full text link
    The hydrodynamic phase field model is applied to the problem of film spreading on a solid surface. The disjoining potential, responsible for modification of the fluid properties near a three-phase contact line, is computed from the solvability conditions of the density field equation with appropriate boundary conditions imposed on the solid support. The equation describing the motion of a spreading film are derived in the lubrication approximation. In the case of quasi-equilibrium spreading, is shown that the correct sharp-interface limit is obtained, and sample solutions are obtained by numerical integration. It is further shown that evaporation or condensation may strongly affect the dynamics near the contact line, and accounting for kinetic retardation of the interphase transport is necessary to build up a consistent theory.Comment: 14 pages, 5 figures, to appear in PR

    Defect Statistics in the Two Dimensional Complex Ginsburg-Landau Model

    Full text link
    The statistical correlations between defects in the two dimensional complex Ginsburg-Landau model are studied in the defect-coarsening regime. In particular the defect-velocity probability distribution is determined and has the same high velocity tail found for the purely dissipative time-dependent Ginsburg-Landau (TDGL) model. The spiral arms of the defects lead to a very different behavior for the order parameter correlation function in the scaling regime compared to the results for the TDGL model.Comment: 24 page

    Dewetting of thin films on heterogeneous substrates: Pinning vs. coarsening

    Full text link
    We study a model for a thin liquid film dewetting from a periodic heterogeneous substrate (template). The amplitude and periodicity of a striped template heterogeneity necessary to obtain a stable periodic stripe pattern, i.e. pinning, are computed. This requires a stabilization of the longitudinal and transversal modes driving the typical coarsening dynamics during dewetting of a thin film on a homogeneous substrate. If the heterogeneity has a larger spatial period than the critical dewetting mode, weak heterogeneities are sufficient for pinning. A large region of coexistence between coarsening dynamics and pinning is found.Comment: 4 pages, 4 figure

    A new approach for the limit to tree height using a liquid nanolayer model

    Full text link
    Liquids in contact with solids are submitted to intermolecular forces inferring density gradients at the walls. The van der Waals forces make liquid heterogeneous, the stress tensor is not any more spherical as in homogeneous bulks and it is possible to obtain stable thin liquid films wetting vertical walls up to altitudes that incompressible fluid models are not forecasting. Application to micro tubes of xylem enables to understand why the ascent of sap is possible for very high trees like sequoias or giant eucalyptus.Comment: In the conclusion is a complementary comment to the Continuum Mechanics and Thermodynamics paper. 21 pages, 4 figures. Continuum Mechanics and Thermodynamics 20, 5 (2008) to appea

    Random field sampling for a simplified model of melt-blowing considering turbulent velocity fluctuations

    Full text link
    In melt-blowing very thin liquid fiber jets are spun due to high-velocity air streams. In literature there is a clear, unsolved discrepancy between the measured and computed jet attenuation. In this paper we will verify numerically that the turbulent velocity fluctuations causing a random aerodynamic drag on the fiber jets -- that has been neglected so far -- are the crucial effect to close this gap. For this purpose, we model the velocity fluctuations as vector Gaussian random fields on top of a k-epsilon turbulence description and develop an efficient sampling procedure. Taking advantage of the special covariance structure the effort of the sampling is linear in the discretization and makes the realization possible

    Physicists probing active media: What is the measure of success?

    No full text
    I present a critical review of this issue integrating the aims of continuous and agent-based theories and experiment
    corecore