270 research outputs found

    Does Anti-Parallel Spin Always Contain more Information ?

    Get PDF
    We show that the Bloch vectors lying on any great circle is the largest set S(L) for which the parallel states |n,n> can always be transformed into the anti-parallel states |n,-n>. Thus more information about the Bloch vector is not extractable from |n,-n> than from |n,n> by any measuring strategy, for the Bloch vector belonging to S(L). Surprisingly, the largest set of Bloch vectors for which the corresponding qubits can be flipped is again S(L). We then show that probabilistic exact parallel to anti-parallel transformation is not possible if the corresponding anti-parallel spins span the whole Hilbert space of the two qubits. These considerations allow us to generalise a conjecture of Gisin and Popescu (Phys. Rev. Lett. 83 432 (1999)).Comment: Latex, 5 pages, minor revision

    Computation on a Noiseless Quantum Code and Symmetrization

    Get PDF
    Let H{\cal H} be the state-space of a quantum computer coupled with the environment by a set of error operators spanning a Lie algebra L.{\cal L}. Suppose L{\cal L} admits a noiseless quantum code i.e., a subspace CβŠ‚H{\cal C}\subset{\cal H} annihilated by L.{\cal L}. We show that a universal set of gates over C\cal C is obtained by any generic pair of L{\cal L}-invariant gates. Such gates - if not available from the outset - can be obtained by resorting to a symmetrization with respect to the group generated by L.{\cal L}. Any computation can then be performed completely within the coding decoherence-free subspace.Comment: One result added, to appear in Phys. Rev. A (RC) 4 pages LaTeX, no figure

    Secure quantum key distribution using squeezed states

    Get PDF
    We prove the security of a quantum key distribution scheme based on transmission of squeezed quantum states of a harmonic oscillator. Our proof employs quantum error-correcting codes that encode a finite-dimensional quantum system in the infinite-dimensional Hilbert space of an oscillator, and protect against errors that shift the canonical variables p and q. If the noise in the quantum channel is weak, squeezing signal states by 2.51 dB (a squeeze factor e^r=1.34) is sufficient in principle to ensure the security of a protocol that is suitably enhanced by classical error correction and privacy amplification. Secure key distribution can be achieved over distances comparable to the attenuation length of the quantum channel.Comment: 19 pages, 3 figures, RevTeX and epsf, new section on channel losse

    Distributed Relay Protocol for Probabilistic Information-Theoretic Security in a Randomly-Compromised Network

    Full text link
    We introduce a simple, practical approach with probabilistic information-theoretic security to mitigate one of quantum key distribution's major limitations: the short maximum transmission distance (~200 km) possible with present day technology. Our scheme uses classical secret sharing techniques to allow secure transmission over long distances through a network containing randomly-distributed compromised nodes. The protocol provides arbitrarily high confidence in the security of the protocol, with modest scaling of resource costs with improvement of the security parameter. Although some types of failure are undetectable, users can take preemptive measures to make the probability of such failures arbitrarily small.Comment: 12 pages, 2 figures; added proof of verification sub-protocol, minor correction

    Correlated Errors in Quantum Error Corrections

    Full text link
    We show that errors are not generated correlatedly provided that quantum bits do not directly interact with (or couple to) each other. Generally, this no-qubits-interaction condition is assumed except for the case where two-qubit gate operation is being performed. In particular, the no-qubits-interaction condition is satisfied in the collective decoherence models. Thus, errors are not correlated in the collective decoherence. Consequently, we can say that current quantum error correcting codes which correct single-qubit-errors will work in most cases including the collective decoherence.Comment: no correction, 3 pages, RevTe

    Entangling Two Bose-Einstein Condensates by Stimulated Bragg Scattering

    Get PDF
    We propose an experiment for entangling two spatially separated Bose-Einstein condensates by Bragg scattering of light. When Bragg scattering in two condensates is stimulated by a common probe, the resulting quasiparticles in the two condensates get entangled due to quantum communication between the condensates via probe beam. The entanglement is shown to be significant and occurs in both number and quadrature phase variables. We present two methods of detecting the generated entanglement.Comment: 4 pages, Revte

    Universal quantum gates based on a pair of orthogonal cyclic states: Application to NMR systems

    Get PDF
    We propose an experimentally feasible scheme to achieve quantum computation based on a pair of orthogonal cyclic states. In this scheme, quantum gates can be implemented based on the total phase accumulated in cyclic evolutions. In particular, geometric quantum computation may be achieved by eliminating the dynamic phase accumulated in the whole evolution. Therefore, both dynamic and geometric operations for quantum computation are workable in the present theory. Physical implementation of this set of gates is designed for NMR systems. Also interestingly, we show that a set of universal geometric quantum gates in NMR systems may be realized in one cycle by simply choosing specific parameters of the external rotating magnetic fields. In addition, we demonstrate explicitly a multiloop method to remove the dynamic phase in geometric quantum gates. Our results may provide useful information for the experimental implementation of quantum logical gates.Comment: 9 pages, language revised, the publication versio

    Molecular cytogenetic aberrations in patients with multiple myeloma studied by interphase fluorescence in situ hybridization

    No full text
    Background: Multiple myeloma (MM) is an incurable hematological disorder characterized by the accumulation of malignant plasma cells within the bone marrow (BM). The clinical heterogeneity of MM is dictated by the cytogenetic aberrations present in the clonal plasma cells (PCs). Cytogenetic studies in MM are hampered by the hypoproliferative nature of plasma cells in MM. Therefore, fluorescence in situ hybridization (FISH) analysis combined with magnetic-activated cell sorting (MACS) is an attractive alternative for evaluation of numerical and structural chromosomal changes in MM. Methods: Interphase FISH studies with three different specific probes for the regions containing 13q14.3 (D13S319), 14q32 (IGHC/IGHV) and 1q12(CEP1 ) were performed in 48 MM patients. Interphase FISH studies with LSI IGH/CCND1, LSI IGH/FGFR3, and LSI IGH/MAF probes were used to detect t(11;14)(q13;q32), t(4;14)(p16;q32), and t(14;16)(q32;q23) in patients with 14q32 rearrangement. Results: Molecular cytogenetic aberrations were found in 40 (83.3%) of the 48 MM patients. 13 patients (27.1%) simultaneously had 13q deletion/monosomy 13 [del(13q14)], illegitimate IGH rearrangement and chromosome 1 abnormality. Del(13q14) was detected in 21 cases (43.7%), and illegitimate IGH rearrangements in 29 (60.4%) including 6 with t(11;14) and 5 with t(4;14). None of 9 patients with illegitimate IGH rearrangements and without t(11;14) or t(4;14) we detected had t(14;16) (q32;q23). 24 of the 48 MM patients (50%) had chromosome 1 abnormalities. Among 21 patients with del(13q14), 15 patients had Amp1q12;16 had IgH rearrangements. Whereas, among 27 cases without del(13q14), 8 had Amp1q12; 13 had IgH rearrangements. There was a strong association between del(13q14) and Amp1q12(c2 = 8.26, Ρ€ < 0.01), and between del(13q14) and IgH rearrangement(c2 = 3.88, p < 0.05). Conclusion: 13q deletion/monosomy 13, IGH rearrangement and chromosome 1 abnormality are frequent in MM. They are not randomly distributed, but strongly interconnected. Interphase FISH technique combined with MACS using CD138-specific antibody is a highly sensitive technique at detecting molecular cytogenetic aberrations in MM.ОбоснованиС: мноТСствСнная ΠΌΠΈΠ΅Π»ΠΎΠΌΠ° (MM) β€” Π½Π΅ΠΈΠ·Π»Π΅Ρ‡ΠΈΠΌΠΎΠ΅ гСматологичСскоС Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ΡΡ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ΠΌ злокачСствСнных плазматичСских ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² костном ΠΌΠΎΠ·Π³Π΅ (КM). ΠšΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΠΎΡΡ‚ΡŒ MM опрСдСляСтся цитогСнСтичСскими абСррациями, ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π² ΠΊΠ»ΠΎΠ½Π΅ плазматичСских ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (ПК). ЦитогСнСтичСскиС исслСдования MM ослоТнСны Π³ΠΈΠΏΠΎΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ особСнностями ПК. Π’ связи с этим флуорСсцСнтная гибридизация in situ (FISH) Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ с сортировкой ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌΠΈ полями (MACS) прСдставляСтся достойной Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²ΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ ΠΎΡ†Π΅Π½ΠΊΠΈ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… ΠΈ структурных ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ хромосом ΠΏΡ€ΠΈ MM. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Π΅ исслСдования ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ FISH с использованиСм Ρ‚Ρ€Π΅Ρ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… спСцифичСских Π·ΠΎΠ½Π΄ΠΎΠ² для участков, содСрТащих 13q14.3 (D13S319), 14q32 (IGHC/IGHV) ΠΈ 1q12(CEP1), ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Ρƒ 48 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с MM. Π˜Π½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹Π΅ исслСдования ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ FISH с использованиСм Π·ΠΎΠ½Π΄ΠΎΠ² LSI IGH/CCND1, LSI IGH/FGFR3 ΠΈ LSI IGH/MAF примСняли для Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ t(11;14)(q13;q32), t(4;14)(p16;q32), ΠΈ t(14;16)(q32;q23) Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с пСрСстройкой 14q32. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: молСкулярныС цитогСнСтичСскиС Π°Π±Π΅Ρ€Ρ€Π°Ρ†ΠΈΠΈ выявляли Ρƒ 40 (83,3%) ΠΈΠ· 48 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с MM. Π£ 13 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² (27,1%) ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ 13q дСлСция/моносомия 13 [del(13q14)], аномальная пСрСстройка IGH ΠΈ аномалия хромосомы 1. Del(13q14) Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Π² 21 случаС (43,7%), Π° Π°Π½ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ пСрСстройки IGH β€” Π² 29 (60,4%), Π² Ρ‚ΠΎΠΌ числС Ρƒ 6 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с t(11;14) ΠΈ 5 с t(4;14). Ни Ρƒ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· 9 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с Π°Π½ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ пСрСстройками IGH ΠΈ Π±Π΅Π· t(11;14) ΠΈΠ»ΠΈ t(4;14) Π½Π΅ выявляли Ρ‚Ρ€Π°Π½ΡΠ»ΠΎΠΊΠ°Ρ†ΠΈΡŽ t(14;16) (q32;q23). Π£ 24 ΠΈΠ· 48 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с MM (50%) опрСдСляли Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ хромосомы 1. Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΈΠ· 21 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с del(13q14) Π² 15 случаях имСлись пСрСстройки IgH Amp1q12;16. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя ΠΈΠ· 27 случаСв Π±Π΅Π· del(13q14) Ρƒ 8 ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π»ΠΈΡΡŒ Amp1q12; Π² 13 случаях ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈ пСрСстройки IgH. ВыявлСна взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ del(13q14) ΠΈ Amp1q12(Ο‡2 = 8,26, p < 0,01) ΠΈ ΠΌΠ΅ΠΆΠ΄Ρƒ del(13q14) ΠΈ пСрСстройками IgH (Ο‡2 = 3,88, p < 0,05). Π’Ρ‹Π²ΠΎΠ΄Ρ‹: 13q Π΄Π΅Π»Π΅Ρ†ΠΈΡŽ/моносомию 13, пСрСстройку IGH ΠΈ аномалию хромосомы 1 часто ΠΎΡ‚ΠΌΠ΅Ρ‡Π°ΡŽΡ‚ ΠΏΡ€ΠΈ MM, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ ΠΈΡ… распрСдСлСниС Π½Π΅ случайно ΠΈ тСсно взаимосвязано. Π˜Π½Ρ‚Π΅Ρ€Ρ„Π°Π·Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· FISH Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ с MACS с использованиСм CD138-спСцифичных Π°Π½Ρ‚ΠΈΡ‚Π΅Π» являСтся Π²Ρ‹ΡΠΎΠΊΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ молСкулярных цитогСнСтичСских Π°Π±Π΅Ρ€Ρ€Π°Ρ†ΠΈΠΉ ΠΏΡ€ΠΈ MM

    Cavity QED and quantum information processing with "hot" trapped atoms

    Get PDF
    We propose a method to implement cavity QED and quantum information processing in high-Q cavities with a single trapped but non-localized atom. The system is beyond the Lamb-Dick limit due to the atomic thermal motion. Our method is based on adiabatic passages, which make the relevant dynamics insensitive to the randomness of the atom position with an appropriate interaction configuration. The validity of this method is demonstrated from both approximate analytical calculations and exact numerical simulations. We also discuss various applications of this method based on the current experimental technology.Comment: 14 pages, 8 figures, Revte

    Perturbative Formulation and Non-adiabatic Corrections in Adiabatic Quantum Computing Schemes

    Get PDF
    Adiabatic limit is the presumption of the adiabatic geometric quantum computation and of the adiabatic quantum algorithm. But in reality, the variation speed of the Hamiltonian is finite. Here we develop a general formulation of adiabatic quantum computing, which accurately describes the evolution of the quantum state in a perturbative way, in which the adiabatic limit is the zeroth-order approximation. As an application of this formulation, non-adiabatic correction or error is estimated for several physical implementations of the adiabatic geometric gates. A quantum computing process consisting of many adiabatic gate operations is considered, for which the total non-adiabatic error is found to be about the sum of those of all the gates. This is a useful constraint on the computational power. The formalism is also briefly applied to the adiabatic quantum algorithm.Comment: 5 pages, revtex. some references adde
    • …
    corecore