14 research outputs found

    Channel Coupling in A(e,eN)BA(\vec{e},e' \vec{N})B Reactions

    Full text link
    The sensitivity of momentum distributions, recoil polarization observables, and response functions for nucleon knockout by polarized electrons to channel coupling in final-state interactions is investigated using a model in which both the distorting and the coupling potentials are constructed by folding density-dependent effective interactions with nuclear transition densities. Calculations for 16^{16}O are presented for 200 and 433 MeV ejectile energies, corresponding to proposed experiments at MAMI and TJNAF, and for 12^{12}C at 70 and 270 MeV, corresponding to experiments at NIKHEF and MIT-Bates. The relative importance of charge exchange decreases as the ejectile energy increases, but remains significant for 200 MeV. Both proton and neutron knockout cross sections for large recoil momenta, pm>300p_m > 300 MeV/c, are substantially affected by inelastic couplings even at 433 MeV. Significant effects on the cross section for neutron knockout are also predicted at smaller recoil momenta, especially for low energies. Polarization transfer for proton knockout is insensitive to channel coupling, even for fairly low ejectile energies, but polarization transfer for neutron knockout retains nonnegligible sensitivity to channel coupling for energies up to about 200 MeV. The present results suggest that possible medium modifications of neutron and proton electromagnetic form factors for Q20.5(GeV/c)2Q^2 \gtrsim 0.5 (GeV/c)^2 can be studied using recoil polarization with relatively little sensitivity due to final state interactions.Comment: Substantially revised version accepted by Phys. Rev. C; shortened to 49 pages including 21 figure

    Regional Assessment of N saturation using foliar and root d15N

    No full text
    N saturation induced by atmospheric N deposition can have serious consequences for forest health in many regions. In order to evaluate whether foliar may be a robust, regional-scale measure of the onset of N saturation in forest ecosystems, we assembled a large dataset on atmospheric N deposition, foliar and root and N concentration, soil C:N, mineralization and nitrification. The dataset included sites in northeastern North America, Colorado, Alaska, southern Chile and Europe. Local drivers of N cycling (net nitrification and mineralization, and forest floor and soil C:N) were more closely coupled with foliar than the regional driver of N deposition. Foliar increased non-linearly with nitrification:mineralization ratio and decreased with forest floor C:N. Foliar was more strongly related to nitrification rates than was foliar N concentration, but concentration was more strongly correlated with N deposition. Root was more tightly coupled to forest floor properties than was foliar . We observed a pattern of decreasing foliar values across the following species: American beech>yellow birch>sugar maple. Other factors that affected foliar included species composition and climate. Relationships between foliar and soil variables were stronger when analyzed on a species by species basis than when many species were lumped. European sites showed distinct patterns of lower foliar , due to the importance of ammonium deposition in this region. Our results suggest that examining values of foliage may improve understanding of how forests respond to the cascading effects of N deposition
    corecore