44 research outputs found

    Field Measurements of Terrestrial and Martian Dust Devils

    Get PDF
    Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types

    Inhibitory Control and Moral Emotions: Relations to Reparation in Early and Middle Childhood

    Get PDF
    This study examined links between inhibitory control, moral emotions (sympathy and guilt), and reparative behavior in an ethnically diverse sample of 4- and 8-year-olds (N = 162). Caregivers reported their children's reparative behavior, inhibitory control, and moral emotions through a questionnaire, and children reported their guilt feelings in response to a series of vignettes depicting moral transgressions. A hypothesized meditation model was tested with inhibitory control relating to reparative behavior through sympathy and guilt. In support of this model, results revealed that high levels of inhibitory control were associated with high levels of reparative behavior through high levels of sympathy and guilt. However, the mediation of inhibitory control to reparation through guilt was significant for 4-year-olds only. Results are discussed in relation to the temperamental, regulatory, and affective-moral precursors of reparative behavior in early and middle childhood

    Overcoming Confounds of Stimulus Blocking : An Event-Related fMRI Design of Semantic Processing

    No full text
    International audienceThe way in which meaning is represented and processed in the brain is a key issue in cognitive neuro-science, which can be usefully addressed by functional imaging techniques. In contrast to previous imaging studies of semantic knowledge, which have primarily used blocked designs, in this study we use an event-related fMRI (erfMRI) design, which has the advantage of enabling events to be presented pseudorandomly, thus reducing strategic processes and enabling more direct comparison with psychological behavioral studies. We used a semantic categorization task in which events were words representing either artifact or natural kinds concepts. Significant areas of activation for semantic processing included inferior frontal lobe bilaterally (BA 47) and left temporal regions, both inferior (BA 36 and 20) and middle (BA 21). These are areas that have been identified in previous neuroimaging studies of semantic knowledge. However, there were no significant differences between artifact and natural kinds concepts. These results are consistent with our previous imaging studies using blocked designs and suggest that conceptual knowledge is represented in a unitary, distributed neural system undifferentiated by domain of knowledge. These findings demonstrate that event-related designs can generate activations that are similar to those seen in blocked designs investigating semantics and, moreover, offer a greater capacity for interpretation free from the confounds of block effects
    corecore