64 research outputs found

    Evidence for hadronic deconfinement in pˉ\bar{p}-p collisions at 1.8 TeV

    Get PDF
    We have measured deconfined hadronic volumes, 4.4<V<13.04.4 < V < 13.0 fm3^{3}, produced by a one dimensional (1D) expansion. These volumes are directly proportional to the charged particle pseudorapidity densities 6.75<dNc/dη<20.26.75 < dN_{c}/d\eta < 20.2. The hadronization temperature is T=179.5±5T = 179.5 \pm 5 (syst) MeV. Using Bjorken's 1D model,the hadronization energy density is ϵF=1.10±0.26\epsilon_{F} = 1.10 \pm 0.26 (stat) GeV/fm3^{3} corresponding to an excitation of 24.8±6.224.8 \pm 6.2 (stat) quark-gluon degrees of freedom.Comment: 15 pages, 3 figures, 2 table

    Whole Exome Sequencing in Multi-Incident Families Identifies Novel Candidate Genes for Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is a degenerative disease of the central nervous system in which auto-immunity-induced demyelination occurs. MS is thought to be caused by a complex interplay of environmental and genetic risk factors. While most genetic studies have focused on identifying common genetic variants for MS through genome-wide association studies, the objective of the present study was to identify rare genetic variants contributing to MS susceptibility. We used whole exome sequencing (WES) followed by co-segregation analyses in nine multi-incident families with two to four affected individuals. WES was performed in 31 family members with and without MS. After applying a suite of selection criteria, co-segregation analyses for a number of rare variants selected from the WES results were performed, adding 24 family members. This approach resulted in 12 exonic rare variants that showed acceptable co-segregation with MS within the nine families, implicating the genes MBP, PLK1, MECP2, MTMR7, TOX3, CPT1A, SORCS1, TRIM66, ITPR3, TTC28, CACNA1F, and PRAM1. Of these, three genes (MBP, MECP2, and CPT1A) have been previously reported as carrying MS-related rare variants. Six additional genes (MTMR7, TOX3, SORCS1, ITPR3, TTC28, and PRAM1) have also been implicated in MS through common genetic variants. The proteins encoded by all twelve genes containing rare variants interact in a molecular framework that points to biological processes involved in (de-/re-)myelination and auto-immunity. Our approach provides clues to possible molecular mechanisms underlying MS that should be studied further in cellular and/or animal models

    Topological String Amplitudes, Complete Intersection Calabi-Yau Spaces and Threshold Corrections

    Full text link
    We present the most complete list of mirror pairs of Calabi-Yau complete intersections in toric ambient varieties and develop the methods to solve the topological string and to calculate higher genus amplitudes on these compact Calabi-Yau spaces. These symplectic invariants are used to remove redundancies in examples. The construction of the B-model propagators leads to compatibility conditions, which constrain multi-parameter mirror maps. For K3 fibered Calabi-Yau spaces without reducible fibers we find closed formulas for all genus contributions in the fiber direction from the geometry of the fibration. If the heterotic dual to this geometry is known, the higher genus invariants can be identified with the degeneracies of BPS states contributing to gravitational threshold corrections and all genus checks on string duality in the perturbative regime are accomplished. We find, however, that the BPS degeneracies do not uniquely fix the non-perturbative completion of the heterotic string. For these geometries we can write the topological partition function in terms of the Donaldson-Thomas invariants and we perform a non-trivial check of S-duality in topological strings. We further investigate transitions via collapsing D5 del Pezzo surfaces and the occurrence of free Z2 quotients that lead to a new class of heterotic duals.Comment: 117 pages, 1 Postscript figur

    Computational pan-genomics: Status, promises and challenges

    Get PDF
    Many disciplines, from human genetics and oncology to plant breeding, microbiology and virology, commonly face the challenge of analyzing rapidly increasing numbers of genomes. In case of Homo sapiens, the number of sequenced genomes will approach hundreds of thousands in the next few years. Simply scaling up established bioinformatics pipelines will not be sufficient for leveraging the full potential of such rich genomic data sets. Instead, novel, qualitatively different Computational methods and paradigms are needed.We will witness the rapid extension of Computational pan-genomics, a new sub-area of research in Computational biology. In this article, we generalize existing definitions and understand a pangenome as any collection of genomic sequences to be analyzed jointly or to be used as a reference. We examine already available approaches to construct and use pan-genomes, discuss the potential benefits of future technologies and methodologies and review open challenges from the vantage point of the above-mentioned biological disciplines. As a prominent example for a Computational paradigm shift, we particularly highlight the transition from the representation of reference genomes as strings to representations

    1000 Genomes-based metaanalysis identifies 10 novel loci for kidney function

    Get PDF
    HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-Analysis of kidney function based on the estimated glomerular filtration rate (EGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10-8 previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, wh

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    The Physics of the B Factories

    Get PDF
    corecore