58 research outputs found

    “What’s the Point when you only lose a pound?” Reasons for attrition from a multi-component childhood obesity treatment interventions: a qualitative inquiry.

    Get PDF
    This study explored the causes of drop-out from a community-based multicomponent childhood obesity treatment intervention (MCTI), considering parent and child perspectives in order to develop future interventions which manage potential attrition more effectively. Semi-structured interviews explored attrition amongst a sample of children (n=10) and their parents (n=10) who dropped out of a community-based MCTI. Parents and children highlighted psychological and motivational issues (e.g. misaligned expectations, lack of desire to make behaviour changes and perceived costs of change outweigh the perceived gains) as the driving factor for their attrition alongside attitudinal, environmental, interpersonal and treatment variables. The complexity and interaction of factors associated with attrition identified in this study points to the challenges associated with reducing drop-out in MCTI’s. The views of families’ should be a key consideration in the design and implementation of treatment interventions to harness and sustain commitment to the treatment process

    Constraints from Inflation on Scalar-Tensor Gravity Theories

    Full text link
    We show how observations of the perturbation spectra produced during inflation may be used to constrain the parameters of general scalar-tensor theories of gravity, which include both an inflaton and dilaton field. An interesting feature of these models is the possibility that the curvature perturbations on super-horizon scales may not be constant due to non-adiabatic perturbations of the two fields. Within a given model, the tilt and relative amplitude of the scalar and tensor perturbation spectra gives constraints on the parameters of the gravity theory, which may be comparable with those from primordial nucleosynthesis and post-Newtonian experiments.Comment: LaTeX (with RevTex) 19 pages, 8 uuencoded figures appended, also available on WWW via http://star.maps.susx.ac.uk/index.htm

    Racetrack Inflation

    Full text link
    We develop a model of eternal topological inflation using a racetrack potential within the context of type IIB string theory with KKLT volume stabilization. The inflaton field is the imaginary part of the K\"ahler structure modulus, which is an axion-like field in the 4D effective field theory. This model does not require moving branes, and in this sense it is simpler than other models of string theory inflation. Contrary to single-exponential models, the structure of the potential in this example allows for the existence of saddle points between two degenerate local minima for which the slow-roll conditions can be satisfied in a particular range of parameter space. We conjecture that this type of inflation should be present in more general realizations of the modular landscape. We also consider `irrational' models having a dense set of minima, and discuss their possible relevance for the cosmological constant problem.Comment: 23 pages 7 figures. The final version with minor modifications, to appear in JHE

    Quintessence from Shape Moduli

    Full text link
    We show that shape moduli in sub-millimeter extra dimensional scenarios, addressing the gauge hierarchy problem, can dominate the energy density of the universe today. In our scenario, the volume of the extra dimensions is stabilized at a sufficiently high scale to avoid conflicts with nucleosynthesis and solar-system precision gravity experiments, while the shape moduli remain light but couple extremely weakly to brane-localized matter and easily avoid these bounds. Nonlocal effects in the bulk of the extra dimension generate a potential for the shape moduli. The potential has the right form and order of magnitude to account for the present day cosmic acceleration, in a way analogous to models of quintessence as a pseudo Nambu-Goldstone boson.Comment: 8 pages, 1 figur

    Dark Energy and Gravity

    Full text link
    I review the problem of dark energy focusing on the cosmological constant as the candidate and discuss its implications for the nature of gravity. Part 1 briefly overviews the currently popular `concordance cosmology' and summarises the evidence for dark energy. It also provides the observational and theoretical arguments in favour of the cosmological constant as the candidate and emphasises why no other approach really solves the conceptual problems usually attributed to the cosmological constant. Part 2 describes some of the approaches to understand the nature of the cosmological constant and attempts to extract the key ingredients which must be present in any viable solution. I argue that (i)the cosmological constant problem cannot be satisfactorily solved until gravitational action is made invariant under the shift of the matter lagrangian by a constant and (ii) this cannot happen if the metric is the dynamical variable. Hence the cosmological constant problem essentially has to do with our (mis)understanding of the nature of gravity. Part 3 discusses an alternative perspective on gravity in which the action is explicitly invariant under the above transformation. Extremizing this action leads to an equation determining the background geometry which gives Einstein's theory at the lowest order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy, edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure

    State of the world’s plants and fungi 2020

    Get PDF
    Kew’s State of the World’s Plants and Fungi project provides assessments of our current knowledge of the diversity of plants and fungi on Earth, the global threats that they face, and the policies to safeguard them. Produced in conjunction with an international scientific symposium, Kew’s State of the World’s Plants and Fungi sets an important international standard from which we can annually track trends in the global status of plant and fungal diversity
    • 

    corecore