41 research outputs found

    Learning by Teaching SimStudent: Technical Accomplishments and an Initial Use with Students

    Full text link
    The purpose of the current study is to test whether we could create a system where students can learn by teaching a live machine-learning agent, called SimStudent. SimStudent is a computer agent that interactively learns cognitive skills through its own tutored-problem solving experience. We have developed a game-like learning environment where students learn algebra equations by tutoring SimStudent. While Simulated Students, Teachable Agents and Learning Companion systems have been created, our study is unique that it genuinely learns skills from student input. This paper describes the overview of the learning environment and some results from an evaluation study. The study showed that after tutoring SimStudent, the students improved their performance on equation solving. The number of correct answers on the error detection items was also significantly improved. On average students spent 70.0 minutes on tutoring SimStudent and used an average of 15 problems for tutoring. © Springer-Verlag Berlin Heidelberg 2010

    The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the Dark Energy Camera

    Get PDF
    We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational wave emission, GW170817. Our observations commenced 10.5 hours post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg2 in the i and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hours post-merger we detected a bright optical transient located 10:600 from the nucleus of NGC4993 at redshift z = 0:0098, consistent (for H0 = 70 km s-1 Mpc-1) with the distance of 40±8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes i=17.3 and z=17.4, and thus an absolute magnitude of Mi = -15.7, in the luminosity range expected for a kilonova. We identified 1,500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves, and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources

    Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck . I. Construction of CMB lensing maps and modeling choices

    Get PDF
    Joint analyses of cross-correlations between measurements of galaxy positions, galaxy lensing, and lensing of the cosmic microwave background (CMB) offer powerful constraints on the large-scale structure of the Universe. In a forthcoming analysis, we will present cosmological constraints from the analysis of such cross-correlations measured using Year 3 data from the Dark Energy Survey (DES), and CMB data from the South Pole Telescope (SPT) and Planck. Here we present two key ingredients of this analysis: (1) an improved CMB lensing map in the SPT-SZ survey footprint and (2) the analysis methodology that will be used to extract cosmological information from the cross-correlation measurements. Relative to previous lensing maps made from the same CMB observations, we have implemented techniques to remove contamination from the thermal Sunyaev Zel’dovich effect, enabling the extraction of cosmological information from smaller angular scales of the cross-correlation measurements than in previous analyses with DES Year 1 data. We describe our model for the cross-correlations between these maps and DES data, and validate our modeling choices to demonstrate the robustness of our analysis. We then forecast the expected cosmological constraints from the galaxy survey-CMB lensing auto and cross-correlations. We find that the galaxy-CMB lensing and galaxy shear-CMB lensing correlations will on their own provide a constraint on S 8 = σ 8 √ Ω m / 0.3 at the few percent level, providing a powerful consistency check for the DES-only constraints. We explore scenarios where external priors on shear calibration are removed, finding that the joint analysis of CMB lensing cross-correlations can provide constraints on the shear calibration amplitude at the 5% to 10% level

    Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck . II. Cross-correlation measurements and cosmological constraints

    Get PDF
    Cross-correlations of galaxy positions and galaxy shears with maps of gravitational lensing of the cosmic microwave background (CMB) are sensitive to the distribution of large-scale structure in the Universe. Such cross-correlations are also expected to be immune to some of the systematic effects that complicate correlation measurements internal to galaxy surveys. We present measurements and modeling of the cross-correlations between galaxy positions and galaxy lensing measured in the first three years of data from the Dark Energy Survey with CMB lensing maps derived from a combination of data from the 2500     deg 2 SPT-SZ survey conducted with the South Pole Telescope and full-sky data from the Planck satellite. The CMB lensing maps used in this analysis have been constructed in a way that minimizes biases from the thermal Sunyaev Zel’dovich effect, making them well suited for cross-correlation studies. The total signal-to-noise of the cross-correlation measurements is 23.9 (25.7) when using a choice of angular scales optimized for a linear (nonlinear) galaxy bias model. We use the cross-correlation measurements to obtain constraints on cosmological parameters. For our fiducial galaxy sample, which consist of four bins of magnitude-selected galaxies, we find constraints of Ω m = 0.272 + 0.032 − 0.052 and S 8 ≡ σ 8 √ Ω m / 0.3 = 0.736 + 0.032 − 0.028 ( Ω m = 0.245 + 0.026 − 0.044 and S 8 = 0.734 + 0.035 − 0.028 ) when assuming linear (nonlinear) galaxy bias in our modeling. Considering only the cross-correlation of galaxy shear with CMB lensing, we find Ω m = 0.270 + 0.043 − 0.061 and S 8 = 0.740 + 0.034 − 0.029 . Our constraints on S 8 are consistent with recent cosmic shear measurements, but lower than the values preferred by primary CMB measurements from Planck

    Multidisciplinary AEC Education Utilising BIM/PLIM Tools and Processes

    Full text link
    © IFIP International Federation for Information Processing 2013. The construction industry worldwide is moving towards more collaborative working practices, aided by building information modelling (BIM) tools and processes. BIM could be more accurately described as Project Lifecycle Information Management (PLIM). Many firms are claiming to be ‘doing BIM’, but are just scraping the surface in terms of the benefits that can be leveraged from true integrated, collaborative design and construction. New graduates, trained in collaboration and PLIM techniques will be the best people to drive positive change, but current educational models do not tend to provide these skills. This paper describes current worldwide educational trends in collaborative multidisciplinary education, and a proposed framework to assist academics in implementing changes to AEC curricula

    Learning by Teaching SimStudent: Technical Accomplishments and an Initial Use with Students

    No full text
    The purpose of the current study is to test whether we could create a system where students can learn by teaching a live machine-learning agent, called SimStudent. SimStudent is a computer agent that interactively learns cognitive skills through its own tutored-problem solving experience. We have developed a game-like learning environment where students learn algebra equations by tutoring SimStudent. While Simulated Students, Teachable Agents and Learning Companion systems have been created, our study is unique that it genuinely learns skills from student input. This paper describes the overview of the learning environment and some results from an evaluation study. The study showed that after tutoring SimStudent, the students improved their performance on equation solving. The number of correct answers on the error detection items was also significantly improved. On average students spent 70.0 minutes on tutoring SimStudent and used an average of 15 problems for tutoring. © Springer-Verlag Berlin Heidelberg 2010

    Dark Energy Survey Year 3 results: simulation-based cosmological inference with wavelet harmonics, scattering transforms, and moments of weak lensing mass maps I: validation on simulations

    No full text
    International audienceBeyond-two-point statistics contain additional information on cosmological as well as astrophysical and observational (systematics) parameters. In this methodology paper we provide an end-to-end simulation-based analysis of a set of Gaussian and non-Gaussian weak lensing statistics using detailed mock catalogues of the Dark Energy Survey. We implement: 1) second and third moments; 2) wavelet phase harmonics (WPH); 3) the scattering transform (ST). Our analysis is fully based on simulations, it spans a space of seven Μw\nu wCDM cosmological parameters, and it forward models the most relevant sources of systematics of the data (masks, noise variations, clustering of the sources, intrinsic alignments, and shear and redshift calibration). We implement a neural network compression of the summary statistics, and we estimate the parameter posteriors using a likelihood-free-inference approach. We validate the pipeline extensively, and we find that WPH exhibits the strongest performance when combined with second moments, followed by ST. and then by third moments. The combination of all the different statistics further enhances constraints with respect to second moments, up to 25 per cent, 15 per cent, and 90 per cent for S8S_8, Ωm\Omega_{\rm m}, and the Figure-Of-Merit FoMS8,Ωm{\rm FoM_{S_8,\Omega_{\rm m}}}, respectively. We further find that non-Gaussian statistics improve constraints on ww and on the amplitude of intrinsic alignment with respect to second moments constraints. The methodological advances presented here are suitable for application to Stage IV surveys from Euclid, Rubin-LSST, and Roman with additional validation on mock catalogues for each survey. In a companion paper we present an application to DES Year 3 data
    corecore