125 research outputs found
Diffuse Neutron Scattering Study of a Disordered Complex Perovskite Pb(Zn1/3Nb2/3)O3 Crystal
Diffuse scattering around the (110) reciprocal lattice point has been
investigated by elastic neutron scattering in the paraelectric and the relaxor
phases of the disordered complex perovskite crystal-Pb(Zn1/3Nb2/3)O3(PZN). The
appearance of a diffuse intensity peak indicates the formation of polar
nanoregions at temperature T*, approximately 40K above Tc=413K. The analysis of
this diffuse scattering indicates that these regions are in the shape of
ellipsoids, more extended in the direction than in the direction.
The quantitative analysis provides an estimate of the correlation length, \xi,
or size of the regions and shows that \xi ~1.2\xi , consistent with
the primary or dominant displacement of Pb leading to the low temperature
rhombohedral phase. Both the appearance of the polar regions at T*and the
structural transition at Tc are marked by kinks in the \xi curve but not
in the \xi one, also indicating that the primary changes take place in a
direction at both temperatures.Comment: REVTeX file. 4 pages, 3 figures embedded, New version after referee
cond-mat/010605
Automated quantification of the landing error scoring system with a markerless motion-Capture system
Context: The Landing Error Scoring System (LESS) can be used to identify individuals with an elevated risk of lower extremity injury. The limitation of the LESS is that raters identify movement errors from video replay, which is time-consuming and, therefore, may limit its use by clinicians. A markerless motion-capture system may be capable of automating LESS scoring, thereby removing this obstacle. Objective: To determine the reliability of an automated markerless motion-capture system for scoring the LESS. Design: Cross-sectional study. Setting: United States Military Academy. Patients or Other Participants: A total of 57 healthy, physically active individuals (47 men, 10 women; age ¼ 18.6 6 0.6 years, height ¼ 174.5 6 6.7 cm, mass ¼ 75.9 6 9.2 kg). Main Outcome Measure(s): Participants completed 3 jump-landing trials that were recorded by standard video cameras and a depth camera. Their movement quality was evaluated by expert LESS raters (standard video recording) using the LESS rubric and by software that automates LESS scoring (depth-camera data). We recorded an error for a LESS item if it was present on at least 2 of 3 jump-landing trials. We calculated j statistics, prevalence- and bias-adjusted j (PABAK) statistics, and percentage agreement for each LESS item. Interrater reliability was evaluated between the 2 expert rater scores and between a consensus expert score and the markerless motion-capture system score. Results: We observed reliability between the 2 expert LESS raters (average j ¼ 0.45 6 0.35, average PABAK ¼ 0.67 6 0.34; percentage agreement ¼ 0.83 6 0.17). The markerless motion-capture system had similar reliability with consensus expert scores (average j ¼ 0.48 6 0.40, average PABAK ¼ 0.71 6 0.27; percentage agreement ¼ 0.85 6 0.14). However, reliability was poor for 5 LESS items in both LESS score comparisons. Conclusions: A markerless motion-capture system had the same level of reliability as expert LESS raters, suggesting that an automated system can accurately assess movement. Therefore, clinicians can use the markerless motion-capture system to reliably score the LESS without being limited by the time requirements of manual LESS scoring
Peak knee biomechanics and limb symmetry following unilateral anterior cruciate ligament reconstruction: Associations of walking gait and jump-landing outcomes
Background: Aberrant walking-gait and jump-landing biomechanics may influence the development of post-traumatic osteoarthritis and increase the risk of a second anterior cruciate ligament injury, respectively. It remains unknown if individuals who demonstrate altered walking-gait biomechanics demonstrate similar altered biomechanics during jump-landing. Our aim was to determine associations in peak knee biomechanics and limb-symmetry indices between walking-gait and jump-landing tasks in individuals with a unilateral anterior cruciate ligament reconstruction. Methods: Thirty-five individuals (74% women, 22.1 [3.4] years old, 25 [3.89] kg/m 2 ) with an anterior cruciate ligament reconstruction performed 5-trials of self-selected walking-gait and jump-landing. Peak kinetics and kinematics were extracted from the first 50% of stance phase during walking-gait and first 100 ms following ground contact for jump-landing. Pearson product-moment (r) and Spearman's Rho (ρ) analyses were used to evaluate relationships between outcome measures. Significance was set a priori (P ≤ 0.05). Findings: All associations between walking-gait and jump-landing for the involved limb, along with the majority of associations for limb-symmetry indices and the uninvolved limb, were negligible and non-statistically significant. There were weak significant associations for instantaneous loading rate (ρ = 0.39, P = 0.02) and peak knee abduction angle (ρ = 0.36, p = 0.03) uninvolved limb, as well as peak abduction displacement limb-symmetry indices (ρ= − 0.39, p = 0.02) between walking-gait and jump-landing. Interpretation: No systematic associations were found between walking-gait and jump-landing biomechanics for either limb or limb-symmetry indices in people with unilateral anterior cruciate ligament reconstruction. Individuals with an anterior cruciate ligament reconstruction who demonstrate high-involved limb loading or asymmetries during jump-landing may not demonstrate similar biomechanics during walking-gait
Associations Between Slower Walking Speed and T1ρ Magnetic Resonance Imaging of Femoral Cartilage Following Anterior Cruciate Ligament Reconstruction
Objective: To determine whether walking speed, collected at 6 and 12 months following anterior cruciate ligament reconstruction (ACLR), is associated with inter-extremity differences in proteoglycan density, measured via T1ρ magnetic resonance imaging, in tibiofemoral articular cartilage 12 months following ACLR. Methods: Twenty-one individuals with a unilateral patellar-tendon autograft ACLR (10 women and 11 men, mean ± SD age 23.9 ± 2.7 years, mean ± SD body mass index 23.9 ± 2.7 kg/m2) were recruited for participation in this study. Walking speed was collected using 3-dimensional motion capture at 6 and 12 months following ACLR. The articular cartilage of the medial femoral condyle (MFC) and lateral femoral condyle and medial and lateral tibial condyles was manually segmented and subsectioned into 3 regions of interest (anterior, central, and posterior) based on the location of the meniscus in the sagittal plane. Inter-extremity mean T1ρ relaxation time ratios (T1ρ ACLR extremity / T1ρ contralateral extremity) were calculated and used for analysis. Pearson product-moment correlations were used to determine associations between walking speed and inter-extremity differences in T1ρ relaxation time ratios. Results: Slower walking speed 6 months post-ACLR was significantly associated with higher T1ρ relaxation time ratios in the MFC of the ACLR extremity 12 months following ACLR (posterior MFC, r = −0.51, P = 0.02; central MFC, r = −0.47, P = 0.04). Similarly, slower walking speed at 12 months post-ACLR was significantly associated with higher T1ρ relaxation time ratios in the posterior MFC ACLR extremity (r = −0.47, P = 0.04) 12 months following ACLR. Conclusion: Slower walking speed at 6 and 12 months following ACLR may be associated with early proteoglycan density changes in medial femoral compartment cartilage health in the first 12 months following ACLR
Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study
A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study
In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4
Study of ferrite formation in neutron irradiated austenitic stainless steels. Progress report, June 1, 1973--February 28, 1974
A vibrating reed magnetometer was constructed for measurements on small irradiated samples. It can be operated at 4 to 500 deg K and can detect a magnetic moment of 4 x 10/sup -5/ erg/O/sub e/, with a signal-to-noise ratio of 20. A simple calibration procedure was devised. The magnetometer was used to measure magnetization curves of an irradiated type 316 austenitic stainless steel specimen at two different temperatures. Results confirm that the specimen contains numerous small magnetic particles which are presumed to be ferrite. Transmission electron microscopy of the irradiated specimen was not conclusive for the presence or absence of ferrite. (5 figures) (DLC
- …