85 research outputs found
New constraints for heavy axion-like particles from supernovae
We derive new constraints on the coupling of heavy pseudoscalar (axion-like)
particles to photons, based on the gamma ray flux expected from the decay of
these particles into photons. After being produced in the supernova core, these
heavy axion-like particles would escape and a fraction of them would decay into
photons before reaching the Earth. We have calculated the expected flux on
Earth of these photons from the supernovae SN 1987A and Cassiopeia A and
compared our results to data from the Fermi Large Area Telescope. This analysis
provides strong constraints on the parameter space for axion-like particles.
For a particle mass of 100 MeV, we find that the Peccei-Quinn constant, f_a,
must be greater than about 10^{15} GeV. Alternatively, for fa=10^{12} GeV, we
exclude the mass region between approximately 100 eV and 1 GeV.Comment: 14 pages, 4 figures. Version published in JCAP. Major changes in the
exposition. Added a figure. Added appendix. Minor changes in the results.
Some changes in the bibliograph
Exploring Minimal Scenarios to Produce Transversely Bright Electron Beams Using the Eigen-Emittance Concept
Next generation hard X-ray free electron lasers require electron beams with
low transverse emittance. One proposal to achieve these low emittances is to
exploit the eigen-emittance values of the beam. The eigen-emittances are
invariant under linear beam transport and equivalent to the emittances in an
uncorrelated beam. If a correlated beam with two small eigen-emittances can be
produced, removal of the correlations via appropriate optics will lead to two
small emittance values, provided non-linear effects are not too large. We study
how such a beam may be produced using minimal linear correlations. We find it
is theoretically possible to produce such a beam, however it may be more
difficult to realize in practice. We identify linear correlations that may lead
to physically realizable emittance schemes and discuss promising future
avenues.Comment: 7 pages, 2 figures, to appear in NIM
Astrophysical Axion Bounds
Axion emission by hot and dense plasmas is a new energy-loss channel for
stars. Observational consequences include a modification of the solar
sound-speed profile, an increase of the solar neutrino flux, a reduction of the
helium-burning lifetime of globular-cluster stars, accelerated white-dwarf
cooling, and a reduction of the supernova SN 1987A neutrino burst duration. We
review and update these arguments and summarize the resulting axion
constraints.Comment: Contribution to Axion volume of Lecture Notes in Physics, 20 pages, 3
figure
Gradient models of the axion-photon coupling
We establish an extended version of the Einstein - Maxwell - axion model by
introducing into the Lagrangian cross-terms, which contain the gradient
four-vector of the pseudoscalar (axion) field in convolution with the Maxwell
tensor. The gradient model of the axion-photon coupling is applied to
cosmology: we analyze the Bianchi-I type Universe with an initial magnetic
field, electric field induced by the axion-photon interaction, cosmological
constant and dark matter, which is described in terms of the pseudoscalar
(axion) field. Analytical, qualitative and numerical results are presented in
detail for two distinguished epochs: first, for the early Universe with
magnetic field domination; second, for the stage of late-time accelerated
expansion.Comment: 26 pages, 5 figures, accepted for publication in The European
Physical Journal
Extended search for the invisible axion with the axion dark matter experiment
This Letter reports on a cavity haloscope search for dark matter axions in the Galactic halo in the mass range 2.81–3.31μeV. This search utilizes the combination of a low-noise Josephson parametric amplifier and a large-cavity haloscope to achieve unprecedented sensitivity across this mass range. This search excludes the full range of axion-photon coupling values predicted in benchmark models of the invisible axion that solve the strong CP problem of quantum chromodynamics
Autoantibodies against type I IFNs in patients with life-threatening COVID-19
Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men
Low frequency, 100–600 MHz, searches with axion cavity haloscopes
We investigate reentrant and dielectric loaded cavities for the purpose of extending the range of axion cavity haloscopes to lower masses, below the range where the Axion Dark Matter experiment (ADMX) has already searched. Reentrant and dielectric loaded cavities were simulated numerically to calculate and optimize their form factors and quality factors. A prototype reentrant cavity was built and its measured properties were compared with the simulations. We estimate the sensitivity of axion dark matter searches using reentrant and dielectric loaded cavities inserted in the existing ADMX magnet at the University of Washington and a large magnet being installed at Fermilab
Axion dark matter eXperiment: run 1A analysis details
The ADMX Collaboration gathered data for its Run 1A axion dark matter search from January 2017 to June 2017, scanning with an axion haloscope over the frequency range 645–680 MHz (2.66–2.81 μeV in axion mass) at Dine-Fischler-Srednicki-Zhitnitskii (DFSZ) sensitivity. The resulting axion search found no axionlike signals comprising all the dark matter in the form of a virialized galactic halo over the entire frequency range, implying lower bound exclusion limits at or below DFSZ coupling at the 90% confidence level. This paper presents expanded details of the axion search analysis of Run 1A, including review of relevant experimental systems, data-taking operations, preparation and interpretation of raw data, axion search methodology, candidate handling, and final axion limits
Improved receiver noise calibration for ADMX axion search: 4.54 to 5.41 μeV
Axions are a well-motivated candidate for dark matter. The preeminent method to search for axion dark matter is known as the axion haloscope, which makes use of the conversion of axions to photons in a large magnetic field. Because of the weak coupling of axions to photons, however, the expected signal strength is exceptionally small. To increase signal strength, many haloscopes make use of resonant enhancement and high gain amplifiers, while also taking measures to keep receiver noise as low as possible such as the use of dilution refrigerators and ultra-low-noise electronics. In this paper, we derive the theoretical noise model based on the sources of noise found within a typical axion haloscope receiver chain, using the Axion Dark Matter eXperiment (ADMX) as a case study. We present examples of different noise calibration measurements at 1280 MHz taken during ADMX’s most recent data-taking run. These new results shed light on a previously unidentified interaction between the cavity and Josephson Parametric Amplifier as well as provide a better understanding of the systematic uncertainty on the system noise temperature used in the axion search analysis for this data-taking run. Finally, the consistency between the measurements and the detailed model provide suggestions for future improvements within ADMX and other axion haloscopes to reach a lower noise temperature
ADMX axion dark matter bounds around 3.3 μeV with Dine-Fischler-Srednicki-Zhitnitsky discovery ability
We report the results of a QCD axion dark matter search with discovery ability for Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) axions using an axion haloscope. Sub-Kelvin noise temperatures are reached with an ultralow noise Josephson parametric amplifier cooled by a dilution refrigerator. This work excludes (with a 90% confidence level) DFSZ axions with masses between 3.27 to 3.34 μeV, assuming a standard halo model with a local energy density of 0.45 GeV/cm3 made up 100% of axions
- …
