54 research outputs found

    Visible light tomography on RTP

    Get PDF
    A diagnostic for visible light tomography is being prepared for the Rijnhuizen Tokamak Project (RTP). Light emitted in the range of 200 to 1100 nm will be detected by five cameras positioned around the plasma in one poloidal plane. Each camera has 16 detector elements. The 80 channels are provided with parallel electronics with a bandwidth of 200 kHz. Imaging systems are used to collect the light on the detector elements. The resolution of this system is of the order of 1 cm. Optical filters in front of the detectors can select interesting wavelength ranges, such as spectral lines or a line-free part of the continuum radiatio

    Non-neoclassical up/down asymmetry of impurity emission on Alcator C-Mod

    Get PDF
    We demonstrate that existing theories are insufficient to explain up/down asymmetries of argon x-ray emission in Alcator C-Mod ohmic plasmas. Instead of the poloidal variation, ñ[subscript z]/〈n[subscript z]âŒȘ, being of order the inverse aspect ratio, Ï”, and scaling linearly with B[subscript t][superscript _ over n][subscript e]/I[2 over p], it is observed over 0.8 < r/a < 1.0 to be of order unity and exhibits a threshold behaviour between 3.5 <B[subscript t][superscript _ over n][subscript e]/I[subscript p] < 4.0 (T10[superscript 20] m[superscript −3] MA[superscript −1]). The transition from a poloidally symmetric to asymmetric impurity distribution is shown to occur at densities just below those that trigger a reversal of the core toroidal rotation direction, thought to be linked to the transition between the linear and saturated ohmic confinement regimes. A possible drive is discussed by which anomalous radial transport might sustain the impurity density asymmetry as the ratio of the perpendicular to parallel equilibration times, τ[subscript ⊄,z]/τ[subscript ∄,z], approaches unity. This explanation requires a strong up/down asymmetry in radial flux which, while not observable on C-Mod, has been measured in TEXT and Tore Supra ohmic plasmas.United States. Dept. of Energy (Contract DE-FC02-99ER54512)United States. Dept. of Energy (Fusion Research Postdoctoral Research Program

    Tomography of fast-ion velocity-space distributions from synthetic CTS and FIDA measurements

    Get PDF
    We compute tomographies of 2D fast-ion velocity distribution functions from synthetic collective Thomson scattering (CTS) and fast-ion D-alpha (FIDA) 1D measurements using a new reconstruction prescription. Contradicting conventional wisdom we demonstrate that one single 1D CTS or FIDA view suffices to compute accurate tomographies of arbitrary 2D functions under idealized conditions. Under simulated experimental conditions, single-view tomographies do not resemble the original fast-ion velocity distribution functions but nevertheless show their coarsest features. For CTS or FIDA systems with many simultaneous views on the same measurement volume, the resemblance improves with the number of available views, even if the resolution in each view is varied inversely proportional to the number of views, so that the total number of measurements in all views is the same. With a realistic four-view system, tomographies of a beam ion velocity distribution function at ASDEX Upgrade reproduce the general shape of the function and the location of the maxima at full and half injection energy of the beam ions. By applying our method to real many-view CTS or FIDA measurements, one could determine tomographies of 2D fast-ion velocity distribution functions experimentally

    Combination of fast-ion diagnostics in velocity-space tomographies:Paper

    Get PDF
    Fast-ion Dα (FIDA) and collective Thomson scattering (CTS) diagnostics provide indirect measurements of fastion velocity distribution functions in magnetically confined plasmas. Here we present the first prescription for velocity-space tomographic inversion of CTS and FIDA measurements that can use CTS and FIDA measurements together and that takes uncertainties in such measurements into account. Our prescription is general and could be applied to other diagnostics. We demonstrate tomographic reconstructions of an ASDEX Upgrade beam ion velocity distribution function. First, we compute synthetic measurements from two CTS views and two FIDA views using a TRANSP/NUBEAM simulation, and then we compute joint tomographic inversions in velocity-space from these. The overall shape of the 2D velocity distribution function and the location of the maxima at full and half beam injection energy are well reproduced in velocity-space tomographic inversions, if the noise level in the measurements is below 10%. Our results suggest that 2D fast-ion velocity distribution functions can be directly inferred from fast-ion measurements and their uncertainties, even if the measurements are taken with different diagnostic methods

    Optimization of apertures and collimators for multi-channel plasma diagnostics

    No full text
    Aperture, pin-hole and collimator detection systems are often used in plasma diagnostics, for example, in soft x-ray detection and bolometer systems. In this article the simultaneous optimization of viewing-beam overlap and light yield is considered in multi-channel aperture and collimator systems for two-dimensional (2D) tomography. This article briefly highlights the relation between beamwidth overlap and spatial aliasing in tomography, and how aliasing can be avoided in theory and in practice. Three-dimensional (3D) single-channel aperture and collimator systems can be approximated by a combination of two planar systems if the aperture is rectangular. Three ways to optimize beamwidth overlap and light yield for planar aperture and collimator systems are considered in detail: overlap of the angular etendue at the full width at half maximum (FWHM), overlap of the geometric function at the FWHM a certain distance from the aperture, and arbitrary overlap for a given maximum beamwidth. The combination of 2D effects from all three optimization methods were used in the design of 3D apertures for a new multi-channel bolometer camera on the Joint European Torus tokamak. The resulting apertures are complex, but the new camera has several advantages over previous cameras. (C) 2002 American Institute of Physics
    • 

    corecore