13 research outputs found

    The impact of medical education and networking on the outcome of leukemia treatment in developing countries. The experience of International Consortium on Acute Promyelocytic Leukemia (IC-APL)

    No full text
    Objectives: Several clinical trials conducted in Europe and US reported favorable outcomes of patients with APL treated with the combination of all trans retinoic acid (ATRA) and anthracyclines. Nevertheless, the results observed in developing countries with the same regimen was poorer, mainly due to high early mortality mainly due bleeding. The International Consortium on Acute Promyelocytic Leukemia (IC-APL) is an initiative of the International Members Committee of the ASH and the project aims to reduce this gap through the establishment of international network, which was launched in Brazil, Mexico and Uruguay. Methods: The IC-APL treatment protocol is similar to the PETHEMA 2005, but changing idarubicin to daunorubicin. All patients with a suspected diagnosis of APL were immediately started on ATRA, while bone marrow samples were shipped to a national central lab where genetic verification of the diagnosis was performed. The immunofluorescence using an anti-PML antibody allowed a rapid confirmation of the diagnosis and, the importance of supportive measures was reinforced. Results: The interim analysis of 97 patients enrolled in the IC-APL protocol showed that complete remission (CR) rate was 83% and the 2-year overall survival and disease-free survival were 80% and 90%, respectively. Of note, the early mortality rate was reduced to 7.5%. Discussion: The results of IC-APL demonstrate the impact of educational programs and networking on the improvement of the leukemia treatment outcome in developing countries

    Measurement of the generalized polarizabilities of the proton in virtual compton scattering at Q2=0.92and1.76GeV2Q^2=0.92 and 1.76 GeV^2: II. Dispersion relation analysis

    No full text
    PHAS

    Below One Earth: The Detection, Formation, and Properties of Subterrestrial Worlds

    No full text

    Branching Morphogenesis in Vertebrate Neurons

    No full text

    Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab

    No full text
    This document presents the initial scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab) to 22 GeV. It is the result of a community effort, incorporating insights from a series of workshops conducted between March 2022 and April 2023. With a track record of over 25 years in delivering the world's most intense and precise multi-GeV electron beams, CEBAF's potential for a higher energy upgrade presents a unique opportunity for an innovative nuclear physics program, which seamlessly integrates a rich historical background with a promising future. The proposed physics program encompass a diverse range of investigations centered around the nonperturbative dynamics inherent in hadron structure and the exploration of strongly interacting systems. It builds upon the exceptional capabilities of CEBAF in high-luminosity operations, the availability of existing or planned Hall equipment, and recent advancements in accelerator technology. The proposed program cover various scientific topics, including Hadron Spectroscopy, Partonic Structure and Spin, Hadronization and Transverse Momentum, Spatial Structure, Mechanical Properties, Form Factors and Emergent Hadron Mass, Hadron-Quark Transition, and Nuclear Dynamics at Extreme Conditions, as well as QCD Confinement and Fundamental Symmetries. Each topic highlights the key measurements achievable at a 22 GeV CEBAF accelerator. Furthermore, this document outlines the significant physics outcomes and unique aspects of these programs that distinguish them from other existing or planned facilities. In summary, this document provides an exciting rationale for the energy upgrade of CEBAF to 22 GeV, outlining the transformative scientific potential that lies within reach, and the remarkable opportunities it offers for advancing our understanding of hadron physics and related fundamental phenomena
    corecore