74 research outputs found

    Waist-to-height ratio and cardiometabolic risk factors in adolescence: findings from a prospective birth cohort

    Get PDF
    What is already known about this subject In adults, associations between body mass index (BMI), waist-to-height ratio (WHtR) and cardiometabolic outcomes are similar. In children and adolescents, results from cross-sectional studies examining the associations between BMI z scores, WHtR and cardiometabolic outcomes are conflicting and there is a paucity of prospective data.<p></p> What this study adds This is the first study to demonstrate the prospective association between WHtR in childhood and cardiometabolic outcomes in adolescent boys. WHtR is a simple calculation that can be used to identify children and adolescents for cardiometabolic risk without the need for reference growth charts. The WHtR cut-point of ≥0.5 was highly specific in identifying cardiometabolic risk co-occurrence but has poor sensitivity.<p></p> Objective To examine the associations between body mass index (BMI) and waist-to-height ratio (WHtR) measured in childhood and adolescence and cardiometabolic risk factors in adolescence.<p></p> Methods Secondary data analysis of the Avon Longitudinal Study of Parents and Children, a population based cohort. Data from 2858 adolescents aged 15.5 (standard deviation 0.4) years and 2710 of these participants as children aged 7–9 years were used in this analysis. Outcome measures were cardiometabolic risk factors, including triglycerides, low density lipoprotein cholesterol, high density lipoprotein cholesterol, insulin, glucose and blood pressure at 15 years of age.<p></p> Results Both BMI and WHtR measured at ages 7–9 years and at age 15 years were associated with cardiometabolic risk factors in adolescents. A WHtR ≥0.5 at 7–9 years increased the odds by 4.6 [95% confidence interval 2.6 to 8.1] for males and 1.6 [0.7 to 3.9] for females of having three or more cardiometabolic risk factors in adolescence. Cross-sectional analysis indicated that adolescents who had a WHtR ≥0.5, the odds ratio of having three or more cardiometabolic risk factors was 6.8 [4.4 to 10.6] for males and 3.8 [2.3 to 6.3] for females. The WHtR cut-point was highly specific in identifying cardiometabolic risk co-occurrence in male children and adolescents as well as female children (90 to 95%), but had poor sensitivity (17 to 53%). Similar associations were observed when BMI was used to define excess adiposity.<p></p> Conclusions WHtR is a simple alternative to age and sex adjusted BMI for assessing cardiometabolic risk in adolescents

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc
    corecore