537 research outputs found

    Photon decay gamma->nu anti-nu in an external magnetic field

    Full text link
    The process of the photon decay into the neutrino - antineutrino pair in a magnetic field is investigated. The amplitude and the probability are analysed in the limits of relatively small and strong fields. The probability is suppressed by a factor (G_F m^2_e)^2 as compared with the probability of the pure electromagnetic process gamma -> e- e+. However, the process with neutrinos could play a role of an additional channel of stellar energy-loss.Comment: 8 pages, LaTeX, typos fixed, minor modifications, version accepted to Physics Letters

    Electromagnetic Catalysis of the Radiative Decay of the Axion

    Full text link
    The radiative decay of the axion a→γγa \to \gamma \gamma is investigated in an external electromagnetic field in DFSZ model in which axion couples to both quarks and leptons at tree level. The decay probability is strongly catalyzed by the external field, namely, the field removes the main suppression caused by the smallness of the axion mass.Comment: Minor revision, references added, to be published in Phys.Lett.

    Axion decay a→ff~a \to f \tilde f in a strong magnetic field

    Full text link
    The axion decay into charged fermion-antifermion pair a →f f~a ~\to f ~\tilde f is studied in external crossed and magnetic fields. The result we have obtained can be of use to re-examine the lower limit on the axion mass in case of possible existence of strong magnetic fields at the early Universe stage.Comment: 6 pages, latex. Amended version, references added, to be published in Phys.Lett.

    A One-Parameter Family of Hamiltonian Structures for the KP Hierarchy and a Continuous Deformation of the Nonlinear \W_{\rm KP} Algebra

    Full text link
    The KP hierarchy is hamiltonian relative to a one-parameter family of Poisson structures obtained from a generalized Adler map in the space of formal pseudodifferential symbols with noninteger powers. The resulting \W-algebra is a one-parameter deformation of \W_{\rm KP} admitting a central extension for generic values of the parameter, reducing naturally to \W_n for special values of the parameter, and contracting to the centrally extended \W_{1+\infty}, \W_\infty and further truncations. In the classical limit, all algebras in the one-parameter family are equivalent and isomorphic to \w_{\rm KP}. The reduction induced by setting the spin-one field to zero yields a one-parameter deformation of \widehat{\W}_\infty which contracts to a new nonlinear algebra of the \W_\infty-type.Comment: 31 pages, compressed uuencoded .dvi file, BONN-HE-92/20, US-FT-7/92, KUL-TF-92/20. [version just replaced was truncated by some mailer

    Darboux Coordinates and Liouville-Arnold Integration in Loop Algebras

    Get PDF
    Darboux coordinates are constructed on rational coadjoint orbits of the positive frequency part \wt{\frak{g}}^+ of loop algebras. These are given by the values of the spectral parameters at the divisors corresponding to eigenvector line bundles over the associated spectral curves, defined within a given matrix representation. A Liouville generating function is obtained in completely separated form and shown, through the Liouville-Arnold integration method, to lead to the Abel map linearization of all Hamiltonian flows induced by the spectral invariants. Serre duality is used to define a natural symplectic structure on the space of line bundles of suitable degree over a permissible class of spectral curves, and this is shown to be equivalent to the Kostant-Kirillov symplectic structure on rational coadjoint orbits. The general construction is given for g=gl(r)\frak{g}=\frak{gl}(r) or sl(r)\frak{sl}(r), with reductions to orbits of subalgebras determined as invariant fixed point sets under involutive automorphisms. The case g=sl(2)\frak{g=sl}(2) is shown to reproduce the classical integration methods for finite dimensional systems defined on quadrics, as well as the quasi-periodic solutions of the cubically nonlinear Schr\"odinger equation. For g=sl(3)\frak{g=sl}(3), the method is applied to the computation of quasi-periodic solutions of the two component coupled nonlinear Schr\"odinger equation.Comment: 61 pg

    Universal Drinfeld-Sokolov Reduction and Matrices of Complex Size

    Full text link
    We construct affinization of the algebra glλgl_{\lambda} of ``complex size'' matrices, that contains the algebras gln^\hat{gl_n} for integral values of the parameter. The Drinfeld--Sokolov Hamiltonian reduction of the algebra glλ^\hat{gl_{\lambda}} results in the quadratic Gelfand--Dickey structure on the Poisson--Lie group of all pseudodifferential operators of fractional order. This construction is extended to the simultaneous deformation of orthogonal and simplectic algebras that produces self-adjoint operators, and it has a counterpart for the Toda lattices with fractional number of particles.Comment: 29 pages, no figure

    Extensions of the matrix Gelfand-Dickey hierarchy from generalized Drinfeld-Sokolov reduction

    Get PDF
    The p×pp\times p matrix version of the rr-KdV hierarchy has been recently treated as the reduced system arising in a Drinfeld-Sokolov type Hamiltonian symmetry reduction applied to a Poisson submanifold in the dual of the Lie algebra gl^pr⊗C[λ,λ−1]\widehat{gl}_{pr}\otimes {\Complex}[\lambda, \lambda^{-1}]. Here a series of extensions of this matrix Gelfand-Dickey system is derived by means of a generalized Drinfeld-Sokolov reduction defined for the Lie algebra gl^pr+s⊗C[λ,λ−1]\widehat{gl}_{pr+s}\otimes {\Complex}[\lambda,\lambda^{-1}] using the natural embedding glpr⊂glpr+sgl_{pr}\subset gl_{pr+s} for ss any positive integer. The hierarchies obtained admit a description in terms of a p×pp\times p matrix pseudo-differential operator comprising an rr-KdV type positive part and a non-trivial negative part. This system has been investigated previously in the p=1p=1 case as a constrained KP system. In this paper the previous results are considerably extended and a systematic study is presented on the basis of the Drinfeld-Sokolov approach that has the advantage that it leads to local Poisson brackets and makes clear the conformal (W\cal W-algebra) structures related to the KdV type hierarchies. Discrete reductions and modified versions of the extended rr-KdV hierarchies are also discussed.Comment: 60 pages, plain TE

    Non-Local Matrix Generalizations of W-Algebras

    Full text link
    There is a standard way to define two symplectic (hamiltonian) structures, the first and second Gelfand-Dikii brackets, on the space of ordinary linear differential operators of order mm, L=−dm+U1dm−1+U2dm−2+
+UmL = -d^m + U_1 d^{m-1} + U_2 d^{m-2} + \ldots + U_m. In this paper, I consider in detail the case where the UkU_k are n×nn\times n-matrix-valued functions, with particular emphasis on the (more interesting) second Gelfand-Dikii bracket. Of particular interest is the reduction to the symplectic submanifold U1=0U_1=0. This reduction gives rise to matrix generalizations of (the classical version of) the {\it non-linear} WmW_m-algebras, called Vm,nV_{m,n}-algebras. The non-commutativity of the matrices leads to {\it non-local} terms in these Vm,nV_{m,n}-algebras. I show that these algebras contain a conformal Virasoro subalgebra and that combinations WkW_k of the UkU_k can be formed that are n×nn\times n-matrices of conformally primary fields of spin kk, in analogy with the scalar case n=1n=1. In general however, the Vm,nV_{m,n}-algebras have a much richer structure than the WmW_m-algebras as can be seen on the examples of the {\it non-linear} and {\it non-local} Poisson brackets of any two matrix elements of U2U_2 or W3W_3 which I work out explicitly for all mm and nn. A matrix Miura transformation is derived, mapping these complicated second Gelfand-Dikii brackets of the UkU_k to a set of much simpler Poisson brackets, providing the analogue of the free-field realization of the WmW_m-algebras.Comment: 43 pages, a reference and a remark on the conformal properties for U1≠0U_1\ne 0 adde

    Real clocks and the Zeno effect

    Get PDF
    Real clocks are not perfect. This must have an effect in our predictions for the behaviour of a quantum system, an effect for which we present a unified description encompassing several previous proposals. We study the relevance of clock errors in the Zeno effect, and find that generically no Zeno effect can be present (in such a way that there is no contradiction with currently available experimental data). We further observe that, within the class of stochasticities in time addressed here, there is no modification in emission lineshapes.Comment: 12 a4 pages, no figure

    Softly broken supersymmetric Yang-Mills theories: Renormalization and non-renormalization theorems

    Get PDF
    We present a minimal version for the renormalization of softly broken Super-Yang-Mills theories using the extended model with a local gauge coupling. It is shown that the non-renormalization theorems of the case with unbroken supersymmetry are valid without modifications and that the renormalization of soft-breaking parameters is completely governed by the renormalization of the supersymmetric parameters. The symmetry identities in the present context are peculiar, since the extended model contains two anomalies: the Adler-Bardeen anomaly of the axial current and an anomaly of supersymmetry in the presence of the local gauge coupling. From the anomalous symmetries we derive the exact all-order expressions for the beta functions of the gauge coupling and of the soft-breaking parameters. They generalize earlier results to arbitrary normalization conditions and imply the NSVZ expressions for a specific normalization condition on the coupling.Comment: 24 pages, LaTeX, v2: one reference adde
    • 

    corecore