3,957 research outputs found
Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond
The temperature dependence of the magnetic resonance spectra of
nitrogen-vacancy (NV-) ensembles in the range of 280-330 K was studied. Four
samples prepared under different conditions were studied with NV-
concentrations ranging from 10 ppb to 15 ppm. For all of these samples, the
axial zero-field splitting (ZFS) parameter, D, was found to vary significantly
with temperature, T, as dD/dT = -74.2(7) kHz/K. The transverse ZFS parameter,
E, was non-zero (between 4 and 11 MHz) in all samples, and exhibited a
temperature dependence of dE/(EdT) = -1.4(3) x 10^(-4) K^(-1). The results
might be accounted for by considering local thermal expansion. The observation
of the temperature dependence of the ZFS parameters presents a significant
challenge for room-temperature diamond magnetometers and may ultimately limit
their bandwidth and sensitivity.Comment: 5 pages, 2 figures, 1 tabl
From time series to superstatistics
Complex nonequilibrium systems are often effectively described by a
`statistics of a statistics', in short, a `superstatistics'. We describe how to
proceed from a given experimental time series to a superstatistical
description. We argue that many experimental data fall into three different
universality classes: chi^2-superstatistics (Tsallis statistics), inverse
chi^2-superstatistics, and log-normal superstatistics. We discuss how to
extract the two relevant well separated superstatistical time scales tau and T,
the probability density of the superstatistical parameter beta, and the
correlation function for beta from the experimental data. We illustrate our
approach by applying it to velocity time series measured in turbulent
Taylor-Couette flow, which is well described by log-normal superstatistics and
exhibits clear time scale separation.Comment: 7 pages, 9 figure
Optical quenching and recovery of photoconductivity in single-crystal diamond
We study the photocurrent induced by pulsed-light illumination (pulse
duration is several nanoseconds) of single-crystal diamond containing nitrogen
impurities. Application of additional continuous-wave light of the same
wavelength quenches pulsed photocurrent. Characterization of the optically
quenched photocurrent and its recovery is important for the development of
diamond based electronics and sensing
Nuclear-spin relaxation of Pb in ferroelectric powders
Motivated by a recent proposal by O. P. Sushkov and co-workers to search for
a P,T-violating Schiff moment of the Pb nucleus in a ferroelectric
solid, we have carried out a high-field nuclear magnetic resonance study of the
longitudinal and transverse spin relaxation of the lead nuclei from room
temperature down to 10 K for powder samples of lead titanate (PT), lead
zirconium titanate (PZT), and a PT monocrystal. For all powder samples and
independently of temperature, transverse relaxation times were found to be
ms, while the longitudinal relaxation times exhibited a
temperature dependence, with of over an hour at the lowest temperatures,
decreasing to s at room temperature. At high temperatures, the
observed behavior is consistent with a two-phonon Raman process, while in the
low temperature limit, the relaxation appears to be dominated by a
single-phonon (direct) process involving magnetic impurities. This is the first
study of temperature-dependent nuclear-spin relaxation in PT and PZT
ferroelectrics at such low temperatures. We discuss the implications of the
results for the Schiff-moment search.Comment: 6 pages, 4 figure
Quantified Morphology of HI Disks in the Universe
he upcoming new perspective of the high redshift Universe in the 21 cm line
of atomic hydrogen opens possibilities to explore topics of spiral disk
evolution, hitherto reserved for the optical regime. The growth of spiral gas
disks over Cosmic time can be explored with the new generation of radio
telescopes, notably the SKA, and its precursors, as accurately as with the
Hubble Space Telescope for stellar disks. Since the atomic hydrogen gas is the
building block of these disks, it should trace their formation accurately.
Morphology of HI disks can now equally be quantified over Cosmic time. In
studies of HST deep fields, the optical or UV morphology of high-redshift
galaxy disks have been characterized using a few quantities: concentration (C),
asymmetry (A), smoothness (S), second-order-moment (M20), the GINI coefficient
(G), and Ellipticity (E). We have applied these parameters across wavelengths
and compared them to the HI morphology over the THINGS sample. NGC 3184, an
unperturbed disk, and NGC 5194, the canonical 3:1 interaction, serve as
examples for quantified morphology. We find that morphology parameters
determined in HI are as good or better a tracer of interaction compared to
those in any other wavelength, notably in Asymmetry, Gini and M20. This opens
the possibility of using them in the parameterization pipeline for SKA
precursor catalogues to select interacting or harassed galaxies from their HI
morphology. Asymmetry, Gini and M20 may be redefined for use on data-cubes
rather than HI column density image.Comment: 6 pages, 3 figures, proceeding of the conference "Panoramic Radio
Astronomy: Wide-field 1-2 GHz research on galaxy evolution", June 02 - 05
2009, Groningen, update after small edit
Quantified HI Morphology II : Lopsidedness and Interaction in WHISP Column Density Maps
Lopsidedness of the gaseous disk of spiral galaxies is a common phenomenon in
disk morphology, profile and kinematics. Simultaneously, the asymmetry of a
galaxy's stellar disk, in combination with other morphological parameters, has
seen extensive use as an indication of recent merger or interaction in galaxy
samples. Quantified morphology of stellar spiral disks is one avenue to
determine the merger rate over much of the age of the Universe. In this paper,
we measure the quantitative morphology parameters for the HI column density
maps from the Westerbork observations of neutral Hydrogen in Irregular and
SPiral galaxies (WHISP). These are Concentration, Asymmetry, Smoothness, Gini,
M20, and one addition of our own, the Gini parameter of the second order moment
(GM). Our aim is to determine if lopsided or interacting disks can be
identified with these parameters. Our sample of 141 HI maps have all previous
classifications on their lopsidedness and interaction. We find that the
Asymmetry, M20, and our new GM parameter correlate only weakly with the
previous morphological lopsidedness quantification. These three parameters may
be used to compute a probability that an HI disk is morphologically lopsided
but not unequivocally to determine it. However, we do find that that the
question whether or not an HI disk is interacting can be settled well using
morphological parameters. Parameter cuts from the literature do not translate
from ultraviolet to HI directly but new selection criteria using combinations
of Asymmetry and M20 or Concentration and M20, work very well. We suggest that
future all-sky HI surveys may use these parameters of the column density maps
to determine the merger fraction and hence rate in the local Universe with a
high degree of accuracy.Comment: 12 pages, 5 figures, 1 table, accepted by MNRAS, appendix not
include
A nanoparticle catalyst for heterogeneous phase para-hydrogen-induced polarization in water.
Para-hydrogen-induced polarization (PHIP) is a technique capable of producing spin polarization at a magnitude far greater than state-of-the-art magnets. A significant application of PHIP is to generate contrast agents for biomedical imaging. Clinically viable and effective contrast agents not only require high levels of polarization but heterogeneous catalysts that can be used in water to eliminate the toxicity impact. Herein, we demonstrate the use of Pt nanoparticles capped with glutathione to induce heterogeneous PHIP in water. The ligand-inhibited surface diffusion on the nanoparticles resulted in a (1) H polarization of P=0.25% for hydroxyethyl propionate, a known contrast agent for magnetic resonance angiography. Transferring the (1) H polarization to a (13) C nucleus using a para-hydrogen polarizer yielded a polarization of 0.013%. The nuclear-spin polarizations achieved in these experiments are the first reported to date involving heterogeneous reactions in water
- …