20 research outputs found

    Shared care: a pathway for the rejuvenation of home haemodialysis?

    Get PDF
    There much evidence for the benefits to patients of being able to manage their own haemodialysis rather following the thrice weekly model of most in-centre dialysis programmes. Numbers of patients dialysing at home remains disappointingly small and there are considerable variations between renal centres. Shared care models have been promoted as a route of encouraging greater take-up of home haemodialysis (HHD). There is currently little available evidence to support this assertion. Barriers have been identified to increasing self-management by haemodialysis patients, many of which apply to both shared care and HHD programmes. Overcoming the barriers, many of which are institutional is key to increasing numbers of patients dialysing at home. The development of shared care initiatives alone will not foster greater HHD engagement rather the cultural and other barriers to both must be overcome if such growth is to be seen

    Effect of increased convective clearance by on-line hemodiafiltration on all cause and cardiovascular mortality in chronic hemodialysis patients – the Dutch CONvective TRAnsport STudy (CONTRAST): rationale and design of a randomised controlled trial [ISRCTN38365125]

    Get PDF
    BACKGROUND: The high incidence of cardiovascular disease in patients with end stage renal disease (ESRD) is related to the accumulation of uremic toxins in the middle and large-middle molecular weight range. As online hemodiafiltration (HDF) removes these molecules more effectively than standard hemodialysis (HD), it has been suggested that online HDF improves survival and cardiovascular outcome. Thus far, no conclusive data of HDF on target organ damage and cardiovascular morbidity and mortality are available. Therefore, the CONvective TRAnsport STudy (CONTRAST) has been initiated. METHODS: CONTRAST is a Dutch multi-center randomised controlled trial. In this trial, approximately 800 chronic hemodialysis patients will be randomised between online HDF and low-flux HD, and followed for three years. The primary endpoint is all cause mortality. The main secondary outcome variables are fatal and non-fatal cardiovascular events. CONCLUSION: The study is designed to provide conclusive evidence whether online HDF leads to a lower mortality and less cardiovascular events as compared to standard HD

    What is new in uremic toxicity?

    Get PDF
    Uremic syndrome results from a malfunctioning of various organ systems due to the retention of compounds which, under normal conditions, would be excreted into the urine and/or metabolized by the kidneys. If these compounds are biologically active, they are called uremic toxins. One of the more important toxic effects of such compounds is cardio-vascular damage. A convenient classification based on the physico-chemical characteristics affecting the removal of such compounds by dialysis is: (1) small water-soluble compounds; (2) protein-bound compounds; (3) the larger “middle molecules”. Recent developments include the identification of several newly detected compounds linked to toxicity or the identification of as yet unidentified toxic effects of known compounds: the dinucleotide polyphosphates, structural variants of angiotensin II, interleukin-18, p-cresylsulfate and the guanidines. Toxic effects seem to be typically exerted by molecules which are “difficult to remove by dialysis”. Therefore, dialysis strategies have been adapted by applying membranes with larger pore size (high-flux membranes) and/or convection (on-line hemodiafiltration). The results of recent studies suggest that these strategies have better outcomes, thereby clinically corroborating the importance attributed in bench studies to these “difficult to remove” molecules
    corecore