13,055 research outputs found
Deconstructing double-barred galaxies in 2D and 3D. II. Two distinct groups of inner bars
The intrinsic photometric properties of inner and outer stellar bars within
17 double-barred galaxies are thoroughly studied through a photometric analysis
consisting of: i) two-dimensional multi-component photometric decompositions,
and ii) three-dimensional statistical deprojections for measuring the
thickening of bars, thus retrieving their 3D shape. The results are compared
with previous measurements obtained with the widely used analysis of integrated
light. Large-scale bars in single- and double-barred systems show similar
sizes, and inner bars may be longer than outer bars in different galaxies. We
find two distinct groups of inner bars attending to their in-plane length and
ellipticity, resulting in a bimodal behaviour for the inner/outer bar length
ratio. Such bimodality is related neither to the properties of the host galaxy
nor the dominant bulge, and it does not show a counterpart in the dimension off
the disc plane. The group of long inner bars lays at the lower end of the outer
bar length vs. ellipticity correlation, whereas the short inner bars are out of
that relation. We suggest that this behaviour could be due to either a
different nature of the inner discs from which the inner bars are dynamically
formed, or a different assembly stage for the inner bars. This last possibility
would imply that the dynamical assembly of inner bars is a slow process taking
several Gyr to happen. We have also explored whether all large-scale bars are
prone to develop an inner bar at some stage of their lives, possibility we
cannot fully confirm or discard.Comment: 14 pages, 8 figures, 1 table. Accepted for publication in MNRA
A discrete chemo-dynamical model of the dwarf spheroidal galaxy Sculptor: mass profile, velocity anisotropy and internal rotation
We present a new discrete chemo-dynamical axisymmetric modeling technique,
which we apply to the dwarf spheroidal galaxy Sculptor. The major improvement
over previous Jeans models is that realistic chemical distributions are
included directly in the dynamical modelling of the discrete data. This avoids
loss of information due to spatial binning and eliminates the need for hard
cuts to remove contaminants and to separate stars based on their chemical
properties. Using a combined likelihood in position, metallicity and
kinematics, we find that our models naturally separate Sculptor stars into a
metal-rich and a metal-poor population. Allowing for non-spherical symmetry,
our approach provides a central slope of the dark matter density of . The metal-rich population is nearly isotropic (with
) while the metal-poor population is tangentially
anisotropic (with ) around the half light radius
of kpc. A weak internal rotation of the metal-rich population is
revealed with . We run tests using mock data
to show that a discrete dataset with stars is required to
distinguish between a core () and cusp (), and to
constrain the possible internal rotation to better than confidence
with our model. We conclude that our discrete chemo-dynamical modelling
technique provides a flexible and powerful tool to robustly constrain the
internal dynamics of multiple populations, and the total mass distribution in a
stellar system.Comment: Accepted by MNRA
The intrinsic three-dimensional shape of galactic bars
We present the first statistical study on the intrinsic three-dimensional
(3D) shape of a sample of 83 galactic bars extracted from the CALIFA survey. We
use the galaXYZ code to derive the bar intrinsic shape with a statistical
approach. The method uses only the geometric information (ellipticities and
position angles) of bars and discs obtained from a multi-component photometric
decomposition of the galaxy surface-brightness distributions. We find that bars
are predominantly prolate-triaxial ellipsoids (68%), with a small fraction of
oblate-triaxial ellipsoids (32%). The typical flattening (intrinsic C/A
semiaxis ratio) of the bars in our sample is 0.34, which matches well the
typical intrinsic flattening of stellar discs at these galaxy masses. We
demonstrate that, for prolate-triaxial bars, the intrinsic shape of bars
depends on the galaxy Hubble type and stellar mass (bars in massive S0 galaxies
are thicker and more circular than those in less massive spirals). The bar
intrinsic shape correlates with bulge, disc, and bar parameters. In particular
with the bulge-to-total (B/T) luminosity ratio, disc g-r color, and central
surface brightness of the bar, confirming the tight link between bars and their
host galaxies. Combining the probability distributions of the intrinsic shape
of bulges and bars in our sample we show that 52% (16%) of bulges are thicker
(flatter) than the surrounding bar at 1 level. We suggest that these
percentages might be representative of the fraction of classical and disc-like
bulges in our sample, respectively.Comment: 18 pages, 11 figures, accepted for publication in MNRA
CAR: A MATLAB Package to Compute Correspondence Analysis with Rotations
Correspondence analysis (CA) is a popular method that can be used to analyse relationships between categorical variables. Like principal component analysis, CA solutions can be rotated both orthogonally and obliquely to simple structure without affecting the total amount of explained inertia. We describe a MATLAB package for computing CA. The package includes orthogonal and oblique rotation of axes. It is designed not only for advanced users of MATLAB but also for beginners. Analysis can be done using a user-friendly interface, or by using command lines. We illustrate the use of CAR with one example.
Spectral properties of a two-orbital Anderson impurity model across a non-Fermi liquid fixed point
We study by NRG the spectral properties of a two-orbital Anderson impurity
model in the presence of an exchange splitting which follows either regular or
inverted Hund's rules. The phase diagram contains a non-Fermi liquid fixed
point separating a screened phase, where conventional Kondo effect occurs, from
an unscreened one, where the exchange-splitting takes care of quenching the
impurity degrees of freedom. On the Kondo screened side close to this fixed
point the impurity density of states shows a narrow Kondo-peak on top of a
broader resonance. This narrow peak transforms in the unscreened phase into a
narrow pseudo-gap inside the broad resonance. Right at the fixed point only the
latter survives. The fixed point is therefore identified by a jump of the
density of states at the chemical potential. We also show that particle-hole
perturbations which simply shift the orbital energies do not wash out the fixed
point, unlike those perturbations which hybridize the two orbitals.
Consequently the density-of-state jump at the chemical potential remains finite
even away from particle-hole symmetry, and the pseudo-gap stays pinned at the
chemical potential, although it is partially filled in. We also discuss the
relevance of these results for lattice models which map onto this Anderson
impurity model in the limit of large lattice-coordination. Upon approaching the
Mott metal-insulator transition, these lattice models necessarily enter a
region with a local criticality which reflects the impurity non-Fermi liquid
fixed point. However, unlike the impurity, the lattice can get rid of the
single-impurity fixed-point instability by spontaneously developing
bulk-coherent symmetry-broken phases, which we identify for different lattice
models.Comment: 43 pages, 11 figures. Minor corrections in the Appendi
Trajectory Clustering for Air Traffic Categorisation
Availability of different types of data and advances in data-driven techniques open the path to more detailed analyses of various phenomena. Here, we examine the insights that can be gained through the analysis of historical flight trajectories, using data mining techniques. The goal is to learn about usual (or nominal) choices airlines make in terms of routing, and their relation with aircraft types and operational flight costs. The clustering is applied to intra-European trajectories during one entire summer season, and a statistical test of independence is used to evaluate the relations between the variables of interest. Even though about half of all flights are less than 1000 km long, and mostly operated by one airline, along one trajectory, the analysis shows that, for longer flights, there exists a clear relation between the trajectory clusters and the operating airlines (in about 49% of city pairs) and/or the aircraft types (30%), and/or the flight costs (45%)
Recommended from our members
The pgip family in soybean and three other legume species: evidence for a birth-and-death model of evolution
Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) plant cell wall glycoproteins involved in plant immunity. They are typically encoded by gene families with a small number of gene copies whose evolutionary origin has been poorly investigated. Here we report the complete characterization of the full complement of the pgip family in soybean (Glycine max [L.] Merr.) and the characterization of the genomic region surrounding the pgip family in four legume species. Results: BAC clone and genome sequence analyses showed that the soybean genome contains two pgip loci. Each locus is composed of three clustered genes that are induced following infection with the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary, and remnant sequences of pgip genes. The analyzed homeologous soybean genomic regions (about 126 Kb) that include the pgip loci are strongly conserved and this conservation extends also to the genomes of the legume species Phaseolus vulgaris L., Medicago truncatula Gaertn. and Cicer arietinum L., each containing a single pgip locus. Maximum likelihood-based gene trees suggest that the genes within the pgip clusters have independently undergone tandem duplication in each species. Conclusions: The paleopolyploid soybean genome contains two pgip loci comprised in large and highly conserved duplicated regions, which are also conserved in bean, M. truncatula and C. arietinum. The genomic features of these legume pgip families suggest that the forces driving the evolution of pgip genes follow the birth-and-death model, similar to that proposed for the evolution of resistance (R) genes of NBS-LRR-type
Recommended from our members
Destination Online Communication: Why Less is Sometimes More. A Study of Online Communications of English Destinations
This research investigates the relationship between Web site design and the Web site end-user experience of a vast number of English tourism destinations, both local and regional ones. Following recent research in the field, this paper evaluates destinations' online communication based on the implemented Web site features and on the effectiveness of the communication itself, borrowing its research methodology from different domains. After content and functionality analysis, a user-experience, scenario-based investigation has been carried out, which demonstrated that complex Web sites do not always serve end-users' needs properly; in other words, Web site complexity is not directly related with good user experience. This research may help destination managers to foster their online communication if they have fewer content and functionalities but are better focused and clearly user-oriented. © 2014 Taylor & Francis
A pathogenetic link between non-alcoholic fatty liver disease and celiac disease
Non-alcoholic fatty liver disease (NAFLD) has recently been recognized as the leading cause of the abnormalities in the liver function tests in the Western countries. Celiac disease (CD) is a permanent immunological intolerance to gluten proteins in genetically predisposed individuals. CD has been reported in 4-13 % of the cases with steatohepatitis, although the pathogenesis of the liver steatosis in CD patients is unclear. Based on the literature data, it can be concluded that the inclusion of serological markers of CD should be a part of the general workup in the patients with steatosis when other causes of the liver disease are excluded and in the patients with NAFLD when metabolic risk factors are not evident
- …