59 research outputs found

    Subnanosecond spectral diffusion measurement using photon correlation

    Get PDF
    Spectral diffusion is a result of random spectral jumps of a narrow line as a result of a fluctuating environment. It is an important issue in spectroscopy, because the observed spectral broadening prevents access to the intrinsic line properties. However, its characteristic parameters provide local information on the environment of a light emitter embedded in a solid matrix, or moving within a fluid, leading to numerous applications in physics and biology. We present a new experimental technique for measuring spectral diffusion based on photon correlations within a spectral line. Autocorrelation on half of the line and cross-correlation between the two halves give a quantitative value of the spectral diffusion time, with a resolution only limited by the correlation set-up. We have measured spectral diffusion of the photoluminescence of a single light emitter with a time resolution of 90 ps, exceeding by four orders of magnitude the best resolution reported to date

    Diffraction techniques and vibrational spectroscopy opportunities to characterise bones

    Get PDF
    From a histological point of view, bones that allow body mobility and protection of internal organs consist not only of different organic and inorganic tissues but include vascular and nervous elements as well. Moreover, due to its ability to host different ions and cations, its mineral part represents an important reservoir, playing a key role in the metabolic activity of the organism. From a structural point of view, bones can be considered as a composite material displaying a hierarchical structure at different scales. At the nanometre scale, an organic part, i.e. collagen fibrils and an inorganic part, i.e. calcium phosphate nanocrystals are intimately mixed to assure particular mechanical properties

    Microscopy and its focal switch.

    Get PDF
    Until not very long ago, it was widely accepted that lens-based (far-field) optical microscopes cannot visualize details much finer than about half the wavelength of light. The advent of viable physical concepts for overcoming the limiting role of diffraction in the early 1990s set off a quest that has led to readily applicable and widely accessible fluorescence microscopes with nanoscale spatial resolution. Here I discuss the principles of these methods together with their differences in implementation and operation. Finally, I outline potential developments

    Pemphigus

    Full text link

    Allgemeine therapeutisch-technische Hinweise

    Full text link

    Acykal, Ein Neues Antigonorrhoicum

    No full text

    Über Einen Fall von „Eineiigen“ Zwillings-Schwestern mit Ungleicher Augenfarbe

    No full text

    Migrating the Belle II collaborative services and tools

    No full text
    The Belle II collaboration decided in 2016 to migrate its collaborative services and tools into the existing IT infrastructure at DESY. The goal was to reduce the maintenance effort for solutions operated by Belle II members as well as to deploy state-of-art technologies. In addition, some new services and tools were or will be introduced. Planning and migration work was carried out by small teams consisting of experts form Belle II and the involved IT divisions. The migration was successfully accomplished before the KEK computer centre replacement in August 2016
    corecore