234 research outputs found

    Prof Lungile Pepeta (16 July 1974 - 7 August 2020)

    Get PDF

    Rare germline mutations in African American men diagnosed with earlyâ onset prostate cancer

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142420/1/pros23464_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142420/2/pros23464.pd

    Genetic variation in Glutathione S-Transferase Omega-1, Arsenic Methyltransferase and Methylene-tetrahydrofolate Reductase, arsenic exposure and bladder cancer: a case–control study

    Get PDF
    Abstract Background Ingestion of groundwater with high concentrations of inorganic arsenic has been linked to adverse health outcomes, including bladder cancer, however studies have not consistently observed any elevation in risk at lower concentrations. Genetic variability in the metabolism and clearance of arsenic is an important consideration in any investigation of its potential health risks. Therefore, we examined the association between genes thought to play a role in the metabolism of arsenic and bladder cancer. Methods Single nucleotide polymorphisms (SNPs) in GSTO-1, As3MT and MTHFR were genotyped using DNA from 219 bladder cancer cases and 273 controls participating in a case–control study in Southeastern Michigan and exposed to low to moderate (\u3c50 μg/L) levels of arsenic in their drinking water. A time-weighted measure of arsenic exposure was constructed using measures from household water samples combined with past residential history, geocoded and merged with archived arsenic data predicted from multiple resources. Results While no single SNP in As3MT was significantly associated with bladder cancer overall, several SNPs were associated with bladder cancer among those exposed to higher arsenic levels. Individuals with one or more copies of the C allele in rs11191439 (the Met287Thr polymorphism) had an elevated risk of bladder cancer (OR = 1.17; 95% CI = 1.04-1.32 per 1 μg/L increase in average exposure). However, no association was observed between average arsenic exposure and bladder cancer among TT homozygotes in the same SNP. Bladder cancer cases were also 60% less likely to be homozygotes for the A allele in rs1476413 in MTHFR compared to controls (OR = 0.40; 95% CI = 0.18-0.88). Conclusions Variation in As3MT and MTHFR is associated with bladder cancer among those exposed to relatively low concentrations of inorganic arsenic. Further investigation is warranted to confirm these findings

    Genetic variation in adiponectin (ADIPOQ) and the type 1 receptor (ADIPOR1), obesity and prostate cancer in African Americans

    Get PDF
    BackgroundAdiponectin is a protein derived from adipose tissue suspected to play an important role in prostate carcinogenesis. Variants in the adiponectin gene (ADIPOQ) and its type I receptor (ADIPOR1) have been recently linked to risk of both breast and colorectal cancer. Therefore, we set out to examine the relationship between polymorphisms in these genes, obesity and prostate cancer in study of African American men.MethodsTen single nucleotide polymorphisms (SNPs) in ADIPOQ and ADIPOR1 were genotyped in DNA samples from 131 African American prostate cancer cases and 344 controls participating in the Flint Men's Health Study. Logistic regression was then used to estimate their association with prostate cancer and obesity.ResultsWhile no significant associations were detected between any of the tested SNPs and prostate cancer, the rs1501299 SNP in ADIPOQ was significantly associated with body mass (p=0.03).ConclusionsGenetic variation in ADIPOQ and ADIPOR1 did not predict risk of prostate cancer in this study of African American men. However, the rs1501299 SNP in ADIPOQ was associated with obesity. Further investigation is warranted to determine if racial differences exist in the influence of the adiponectin pathway on prostate cancer risk

    Genetic variation in Glutathione S-Transferase Omega-1, Arsenic Methyltransferase and Methylene-tetrahydrofolate Reductase, arsenic exposure and bladder cancer: a case–control study

    Full text link
    Abstract Background Ingestion of groundwater with high concentrations of inorganic arsenic has been linked to adverse health outcomes, including bladder cancer, however studies have not consistently observed any elevation in risk at lower concentrations. Genetic variability in the metabolism and clearance of arsenic is an important consideration in any investigation of its potential health risks. Therefore, we examined the association between genes thought to play a role in the metabolism of arsenic and bladder cancer. Methods Single nucleotide polymorphisms (SNPs) in GSTO-1, As3MT and MTHFR were genotyped using DNA from 219 bladder cancer cases and 273 controls participating in a case–control study in Southeastern Michigan and exposed to low to moderate (<50 μg/L) levels of arsenic in their drinking water. A time-weighted measure of arsenic exposure was constructed using measures from household water samples combined with past residential history, geocoded and merged with archived arsenic data predicted from multiple resources. Results While no single SNP in As3MT was significantly associated with bladder cancer overall, several SNPs were associated with bladder cancer among those exposed to higher arsenic levels. Individuals with one or more copies of the C allele in rs11191439 (the Met287Thr polymorphism) had an elevated risk of bladder cancer (OR = 1.17; 95% CI = 1.04-1.32 per 1 μg/L increase in average exposure). However, no association was observed between average arsenic exposure and bladder cancer among TT homozygotes in the same SNP. Bladder cancer cases were also 60% less likely to be homozygotes for the A allele in rs1476413 in MTHFR compared to controls (OR = 0.40; 95% CI = 0.18-0.88). Conclusions Variation in As3MT and MTHFR is associated with bladder cancer among those exposed to relatively low concentrations of inorganic arsenic. Further investigation is warranted to confirm these findings.http://deepblue.lib.umich.edu/bitstream/2027.42/112833/1/12940_2012_Article_570.pd

    Interplay between topography, fog and vegetation in the central South Arabian mountains revealed using a novel Landsat fog detection technique

    Get PDF
    In the central South Arabian mountains of Yemen and Oman, monsoon fog interception by the endemic cloud forest is essential for ecosystem functions and services. Yet, we know little about the local factors affecting fog distributions and their cumulative effects on vegetation. To examine these relationships, we developed a novel method of high-resolution fog detection using Landsat data, and validated the results using occurrence records of eight moisture-sensitive plant species. Regression tree analysis was then used to examine the topographic factors influencing fog distributions and the topoclimatic factors influencing satellite-derived vegetation greenness. We find that topography affects fog distributions. Specifically, steep windward slopes obstruct the inland movement of fog, resulting in heterogenous fog densities and hotspots of fog interception. We find that fog distributions explain patterns of vegetation greenness, and overall, that greenness increases with fog density. The layer of fog density describes patterns of vegetation greenness more accurately than topographic variables alone, and thus, we propose that regional vegetation patterns more closely follow a fog gradient, than an altitudinal gradient as previously supposed. The layer of fog density will enable an improved understanding of how species and communities, many of which are endemic, range-restricted, and in decline, respond to local variability in topoclimatic conditions

    Generation and characterisation of Friedreich ataxia YG8R mouse fibroblast and neural stem cell models

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Background: Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by GAA repeat expansion in the first intron of the FXN gene, which encodes frataxin, an essential mitochondrial protein. To further characterise the molecular abnormalities associated with FRDA pathogenesis and to hasten drug screening, the development and use of animal and cellular models is considered essential. Studies of lower organisms have already contributed to understanding FRDA disease pathology, but mammalian cells are more related to FRDA patient cells in physiological terms. Methodology/Principal Findings: We have generated fibroblast cells and neural stem cells (NSCs) from control Y47R mice (9 GAA repeats) and GAA repeat expansion YG8R mice (190+120 GAA repeats). We then differentiated the NSCs in to neurons, oligodendrocytes and astrocytes as confirmed by immunocytochemical analysis of cell specific markers. The three YG8R mouse cell types (fibroblasts, NSCs and differentiated NSCs) exhibit GAA repeat stability, together with reduced expression of frataxin and reduced aconitase activity compared to control Y47R cells. Furthermore, YG8R cells also show increased sensitivity to oxidative stress and downregulation of Pgc-1α and antioxidant gene expression levels, especially Sod2. We also analysed various DNA mismatch repair (MMR) gene expression levels and found that YG8R cells displayed significant reduction in expression of several MMR genes, which may contribute to the GAA repeat stability. Conclusions/Significance: We describe the first fibroblast and NSC models from YG8R FRDA mice and we confirm that the NSCs can be differentiated into neurons and glia. These novel FRDA mouse cell models, which exhibit a FRDA-like cellular and molecular phenotype, will be valuable resources to further study FRDA molecular pathogenesis. They will also provide very useful tools for preclinical testing of frataxin-increasing compounds for FRDA drug therapy, for gene therapy, and as a source of cells for cell therapy testing in FRDA mice. © 2014 Sandi et al
    corecore