4,392 research outputs found

    An Interactive Procedure for Multiobjective Analysis of Water Resources Allocation

    Get PDF
    This paper reports on part of IIASA's research concerning regional water management planning, focusing on the Western Skane region in Southern Sweden. The IIASA studies are concerned with four issues of particular importance to water resources management, namely, conflict resolution, criteria of choice, uncertainty, and institutional arrangements. This paper is related primarily to the first two of these issues. An interactive procedure seeking the satisfactory nondominated solution of the multiobjective water resources allocation problem is discussed. It is based on the Powell method with penalty function for the solution of scalar optimization problem and on a constraint and weighting method, or actually a reference objective method, for the solution of the multiobjective optimization problem. Application of the procedure is illustrated by an example referring to the situation in the Kavlinge River system in the Western Skane, Sweden

    Determinisitic Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

    Full text link
    We demonstrate that the quantum dot-confined dark exciton forms a long-lived integer spin solid state qubit which can be deterministically on-demand initiated in a pure state by one optical pulse. Moreover, we show that this qubit can be fully controlled using short optical pulses, which are several orders of magnitude shorter than the life and coherence times of the qubit. Our demonstrations do not require an externally applied magnetic field and they establish that the quantum dot-confined dark exciton forms an excellent solid state matter qubit with some advantages over the half-integer spin qubits such as the confined electron and hole, separately. Since quantum dots are semiconductor nanostructures that allow integration of electronic and photonic components, the dark exciton may have important implications on implementations of quantum technologies consisting of semiconductor qubits.Comment: Added two authors, minor edits to figure captions, expanded discussion of dark exciton eigenstate

    Potential atmospheric impact of the Toba Mega‐Eruption ∼71,000 years ago

    Get PDF
    An ∼6‐year long period of volcanic sulfate recorded in the GISP2 ice core about 71,100 ± 5000 years ago may provide detailed information on the atmospheric and climatic impact of the Toba mega‐eruption. Deposition of these aerosols occur at the beginning of an ∼1000‐year long stadial event, but not immediately before the longer glacial period beginning ∼67,500 years ago. Total stratospheric loading estimates over this ∼6‐year period range from 2200 to 4400 Mt of H2SO4 aerosols. The range in values is given to compensate for uncertainties in aerosol transport. Magnitude and longevity of the atmospheric loading may have led directly to enhanced cooling during the initial two centuries of this ∼1000‐year cooling event

    Pion and Kaon Polarizabilities and Radiative Transitions

    Get PDF
    CERN COMPASS plans measurements of gamma-pi and gamma-K interactions using 50-280 GeV pion (kaon) beams and a virtual photon target. Pion (kaon) polarizabilities and radiative transitions will be measured via Primakoff effect reactions such as pi+gamma->pi'+gamma and pi+gamma->meson. The former can test a precise prediction of chiral symmetry; the latter for pi+gamma->a1(1260) is important for understanding the polarizability. The radiative transition of a pion to a low mass two-pion system, pi+gamma->pi+pi0, can also be studied to measure the chiral anomaly amplitude F(3pi) (characterizing gamma->3pi), arising from the effective Chiral Lagrangian. We review here the motivation for the above physics program. We describe the beam, target, detector, and trigger requirements for these experiments. We also describe FNAL SELEX attempts to study related physics via the interaction of 600 GeV pions with target electrons. Data analysis in progress aims to identify the reactions pi+e->pi'+e'+pi0 related to the chiral anomaly, and pi+e->pi'+e'+gamma related to pion polarizabilities.Comment: 16 pages, 6 figures, Latex Springer-Verlag style Tel Aviv U. Preprint TAUP-2469-97, Contribution to the Workshop on Chiral Dynamics Theory and Experiment, U. of Mainz, Sept. 1-5, 1997, to be published in Springer-Verlag, Eds. A. Bernstein, Th. Walcher, 199

    Volcanic aerosol records and tephrochronology of the Summit, Greenland, ice cores

    Get PDF
    The recently collected Greenland Ice Sheet Project 2 (GISP2) and Greenland Ice Core Project ice cores from Summit, Greenland, provide lengthy and highly resolved records of the deposition of both the aerosol (H2SO4) and silicate (tephra) components of past volcanism. Both types of data are very beneficial in developing the hemispheric to global chronology of explosive volcanism and evaluating the entire volcanism‐climate system. The continuous time series of volcanic SO42− for the last 110,000 years show a strong relationship between periods of increased volcanism and periods of climatic change. The greatest number of volcanic SO42− signals, many of very high magnitude, occur during and after the final stages of deglaciation (6000–17,000 years ago), possibly reflecting the increased crustal stresses that occur with changing volumes of continental ice sheets and with the subsequent changes in the volume of water in ocean basins (sea level change). The increase in the number of volcanic SO42− signals at 27,000–36,000 and 79,000–85,000 years ago may be related to initial ice sheet growth prior to the glacial maximum and prior to the beginning of the last period of glaciation, respectively. A comparison of the electrical conductivity of the GISP2 core with that of the volcanic SO42− record for the Holocene indicates that only about half of the larger volcanic signals are coincident in the two records. Other volcanic acids besides H2SO4 and other SO42− sources can complicate the comparisons, although the threshold level picked to make such comparisons is especially critical. Tephra has been found in both cores with a composition similar to that originating from the Vatnaöldur eruption that produced the Settlement Layer in Iceland (mid‐A.D. 870s), from the Icelandic eruption that produced the Saksunarvatn ash (∼10,300 years ago), and from the Icelandic eruption(s) that produced the Z2 ash zone in North Atlantic marine cores (∼52,700 years ago). The presence of these layers provides absolute time lines for correlation between the two cores and for correlation with proxy records from marine sediment cores and terrestrial deposits containing these same tephras. The presence of both rhyolitic and basaltic shards in the Z2 ash in theGISP2 core and the composition of the basaltic grains lend support to multiple Icelandic sources (Torfajökull area and Katla) for the Z2 layer. Deposition of the Z2 layer occurs at the beginning of a stadial event, further reflecting the possibility of a volcanic triggering by the effects of changing climatic conditions

    Play Pedagogy, STEM, and Inquiry: Using Mousetrap Cars to Bridge Metacognition

    Get PDF
    Educators are eager to embrace the complexities of 21st century instruction, which presents challenges for integrating science, technology, engineering, and mathematics (STEM) into K-12 instructional practices. Although there are a variety of methodologies for STEM, focusing on play pedagogy and inquiry will facilitate student engagement in metacognitive skills that are necessary components of STEM constructs. Metacognition activates critical thinking skills such as collaborative planning for problem solving, analyzing, self-regulation, and evaluating. Additionally, student motivation is maximized when student led learning results in authentic student products. When educators are provided with support that guides methods for implementation, they will be more successful in the classroom. This completed practice project will present the audience with components for a STEM model that includes context, purposes, methods, evidence, analysis, scholarly discussions, and recommendations. The audience will directly experience the thrill of engaging in collaboration to plan, design, and build mousetrap cars within the context of a STEM lesson
    corecore