31 research outputs found

    Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids

    Get PDF
    To progress from the laboratory to commercial applications, it will be necessary to develop industrially scalable methods to produce large quantities of defect-free graphene. Here we show that high-shear mixing of graphite in suitable stabilizing liquids results in large-scale exfoliation to give dispersions of graphene nanosheets. X-ray photoelectron spectroscopy and Raman spectroscopy show the exfoliated flakes to be unoxidized and free of basal-plane defects. We have developed a simple model that shows exfoliation to occur once the local shear rate exceeds 10(4) s(-1). By fully characterizing the scaling behaviour of the graphene production rate, we show that exfoliation can be achieved in liquid volumes from hundreds of millilitres up to hundreds of litres and beyond. The graphene produced by this method performs well in applications from composites to conductive coatings. This method can be applied to exfoliate BN, MoS2 and a range of other layered crystals

    Homogeneity Analysis of Square Meter-Sized Electrodes for PEM Electrolysis and PEM Fuel Cells

    No full text
    Electrodes for polymer electrolyte membrane electrolyzers and fuel cells are manufactured by coating a catalyst dispersion, consisting of precious metal, ionomer and solvents, onto a substrate that is subsequently dried. One target of current research is to produce square meter-sized electrodes, but so far the homogeneity that can be achieved in this scaling is unclear. To quantify the achievable homogeneity of an electrode, manufactured by means of slot die coating in a roll-to-roll pilot plant, this study focuses first on the selection of an appropriate substrate by investigating thickness, basis weight and surface free energy distribution at the square meter scale. Afterward, a dispersion is coated on the selected substrate, dried and investigated with respect to thickness and basis weight distribution. Among the investigated substrates, Kapton has the smallest scatter in terms of thickness and basis weight. The subsequent coating results in a precious metal loading of 1.10 mg cm−2, with a scattering of 5.5% that can be further reduced to 4.5% when edge effects can be prevented. These results are now available for further research in which it is necessary to investigate whether or not these fluctuations affect the achievable electrochemical efficiencies of electrodes
    corecore