6,483 research outputs found

    GEMPAK: An arbitrary aircraft geometry generator

    Get PDF
    A computer program, GEMPAK, has been developed to aid in the generation of detailed configuration geometry. The program was written to allow the user as much flexibility as possible in his choices of configurations and the detail of description desired and at the same time keep input requirements and program turnaround and cost to a minimum. The program consists of routines that generate fuselage and planar-surface (winglike) geometry and a routine that will determine the true intersection of all components with the fuselage. This paper describes the methods by which the various geometries are generated and provides input description with sample input and output. Also included are descriptions of the primary program variables and functions performed by the various routines. The FORTRAN program GEMPAK has been used extensively in conjunction with interfaces to several aerodynamic and plotting computer programs and has proven to be an effective aid in the preliminary design phase of aircraft configurations

    Orbiter/launch system

    Get PDF
    The system includes reusable turbojet propelled booster vehicles releasably connected to a reusable rocket powered orbit vehicle. The coupled orbiter-booster combination takes off horizontally and ascends to staging altitude and speed under booster power with both orbiter and booster wings providing lift. After staging, the booster vehicles fly back to Earth for horizontal landing and the orbiter vehicle continues ascending to orbit

    Models of Speech Processing

    Get PDF
    One of the fundamental questions about language is how listeners map the acoustic signal onto syllables, words, and sentences, resulting in understanding of speech. For normal listeners, this mapping is so effortless that one rarely stops to consider just how it takes place. However, studies of speech have shown that this acoustic signal contains a great deal of underlying complexity. A number of competing models seek to explain how these intricate processes work. Such models have often narrowed the problem to mapping the speech signal onto isolated words, setting aside the complexity of segmenting continuous speech. Continuous speech has presented a significant challenge for many models because of the high variability of the signal and the difficulties involved in resolving the signal into individual words. The importance of understanding speech becomes particularly apparent when neurological disease affects this seemingly basic ability. Lesion studies have explored impairments of speech sound processing to determine whether deficits occur in perceptual analysis of acoustic-phonetic information or in stored abstract phonological representations (e.g., Basso, Casati,& Vignolo, 1977; Blumstein, Cooper, Zurif,& Caramazza, 1977). Furthermore, researchers have attempted to determine in what ways underlying phonological/phonetic impairments may contribute to auditory comprehension deficits (Blumstein, Baker, & Goodglass, 1977). In this chapter, we discuss several psycholinguistic models of word recognition (the process of mapping the speech signal onto the lexicon), and outline how components of such models might correspond to the functional anatomy of the brain. We will also relate evidence from brain lesion and brain activation studies to components of such models. We then present some approaches that deal with speech perception more generally, and touch on a few current topics of debate.National Institutes of Health under grant NIH DC R01–3378 to the senior author (SLS
    • …
    corecore