10,591 research outputs found
Attachment system for silica tiles
An improved method for markedly increasing the bond strength between a rigid, porous refractory material and non-rigid substrate by densifying the face of the rigid material opposing the substrate is discussed. Densification is accomplished by wetting the refractory material and then impregnating it with a composite slurry having a particle size to fill voids of the porous material
Method for repair of thin glass coatings
A method of repairing cracks or damaged areas in glass, in particular, glass coatings provided on tile. The method includes removing the damaged area using a high speed diamond burr drilling out a cavity that extends slightly into the base material of the tile. All loose material is then cleaned from the drilled out cavity and the cavity is filled adjacent the upper surface of the coating with a filler material including chopped silica fibers mixed with a binder. The filler material is packed into the cavity and a repair coating is applied by means of a brush or sprayed thereover. The repair includes borosilicate suspended in solution. Heat is applied at approximately 2100 F. for approximately five minutes for curing the coating, causing boron silicide particles of the coating to oxidize forming a very fluid boron-oxide rich glass which reacts with the other frits to form an impervious, highly refractory layer
Reduced regulator dependence of neutron-matter predictions with chiral interactions
We calculate the energy per particle in infinite neutron matter
perturbatively using chiral N3LO two-body potentials plus N2LO three-body
forces. The cutoff dependence of the predictions is investigated by employing
chiral interactions with different regulators. We find that the inclusion of
three-nucleon forces, which are consistent with the applied two-nucleon
interaction, leads to a strongly reduced regulator dependence of the results.Comment: 7 pages, 8 figures, 1 table, to be published in Physical Review
Modeling Technical Change in Midwest Corn Yields, 1895-2005: A Time Varying-Regression Approach
This paper explores the use of time-varying regression models to model the effects of technical change in US Midwest Corn yields. The data extends from 1895 to 2005 encompassing the implementation of hybrid technologies and improvements in farm production practices.time-vary regression model, modeling technical change, corn yield technical change, Crop Production/Industries,
Positron lifetime studies in thermoplastic polyimide test specimens
Positron lifetime measurements were made in two thermoplastic polyimide materials recently developed at Langley. The long component lifetime values in polyimidesulfone samples are 847 + or - 81 Ps (dry) and 764 + or - 91 Ps (saturated). The corresponding values in LARC thermoplastic imides are 1080 + or - 139 Ps (dry) and 711 + or - 96 Ps (saturated). Clearly, the presence of moisture has greater effect on positron lifetime in LARC thermoplastic imides than in the case of polyimidesulfones. This result is consistent with the photomicrographic observations made on frozen water saturated specimens of these materials
Electronic packaging - A bibliography
Annotated bibliography of literature on electronic packaging for use in designing electronic equipmen
Low-momentum ring diagrams of neutron matter at and near the unitary limit
We study neutron matter at and near the unitary limit using a low-momentum
ring diagram approach. By slightly tuning the meson-exchange CD-Bonn potential,
neutron-neutron potentials with various scattering lengths such as
and are constructed. Such potentials are renormalized
with rigorous procedures to give the corresponding -equivalent
low-momentum potentials , with which the low-momentum
particle-particle hole-hole ring diagrams are summed up to all orders, giving
the ground state energy of neutron matter for various scattering lengths.
At the limit of , our calculated ratio of to that of
the non-interacting case is found remarkably close to a constant of 0.44 over a
wide range of Fermi-momenta. This result reveals an universality that is well
consistent with the recent experimental and Monte-Carlo computational study on
low-density cold Fermi gas at the unitary limit. The overall behavior of this
ratio obtained with various scattering lengths is presented and discussed.
Ring-diagram results obtained with and those with -matrix
interactions are compared.Comment: 9 pages, 7 figure
The nuclear matter equation of state with consistent two- and three-body perturbative chiral interactions
We compute the energy per particle of infinite symmetric nuclear matter from
chiral N3LO (next-to-next-to-next-to-leading order) two-body potentials plus
N2LO three-body forces. The low-energy constants of the chiral three-nucleon
force that cannot be constrained by two-body observables are fitted to
reproduce the triton binding energy and the 3H-3He Gamow-Teller transition
matrix element. In this way, the saturation properties of nuclear matter are
reproduced in a parameter-free approach. The equation of state is computed up
to third order in many-body perturbation theory, with special emphasis on the
role of the third-order particle-hole diagram. The dependence of these results
on the cutoff scale and regulator function is studied. We find that the
inclusion of three-nucleon forces consistent with the applied two-nucleon
interaction leads to a reduced dependence on the choice of the regulator only
for lower values of the cutoff.Comment: 9 pages, 12 figures, 3 tables, to be published in Physical Review C.
arXiv admin note: text overlap with arXiv:1209.553
Chiral nucleon-nucleon forces in nuclear structure calculations
Realistic nuclear potentials, derived within chiral perturbation theory, are
a major breakthrough in modern nuclear structure theory, since they provide a
direct link between nuclear physics and its underlying theory, namely the QCD.
As a matter of fact, chiral potentials are tailored on the low-energy regime of
nuclear structure physics, and chiral perturbation theory provides on the same
footing two-nucleon forces as well as many-body ones. This feature fits well
with modern advances in ab-initio methods and realistic shell-model. Here, we
will review recent nuclear structure calculations, based on realistic chiral
potentials, for both finite nuclei and infinite nuclear matter.Comment: 10 pages, 8 figures, plenary talk presented at "Nucleus-Nucleus 2015"
Conference, 21-26 June 2015, Catania, to be published in the "Conference
Proceedings" Series of the Italian Physical Societ
MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission
A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band
- …