
 
 
 

Modeling Technical Change in Midwest Corn Yields, 1895-2005: A Time Varying-Regression 
Approach 

 
 
 

Alee L. Lynch 
 

Matthew T. Holt 
 

Allan W. Gray1 
 
 
Abstract:  This paper explores the use of time-varying regression models to model the effects of 
technical change in US Midwest Corn yields.  The data extends from 1895 to 2005 
encompassing the implementation of hybrid technologies and improvements in farm production 
practices. 
 
 
 
 
Key words: time-vary regression model, modeling technical change, corn yield technical change 
 
 

May 31, 2007 
 
 

Paper prepared for presentation at the American Agricultural Economics Association 
Annual Meeting, Portland, Oregon, July 29 – August 1, 2007 

 
 
 
 

Copyright 2007 by Alee L. Lynch, Matthew T. Holt, and Allan Gray. All rights reserved.  
Readers may make verbatim copies of this document for non-commercial purposes by any 

means, provided that this copyright notice appears on all such copies. 
______________ 
 
1     Alee L. Lynch is a graduate student in the Department of Agricultural Economics at Purdue 
University.  Matthew T. Holt is a Professor in the Department of Agricultural Economics at 
Purdue University.  Allan W. Gray is a Professor in the Department of Agricultural Economics at 
Purdue University.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7025897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction 

Corn comes into the life of every American every day.  It can be as obvious as roasted 

corn on the cob or in the form of milk, eggs, or meat.  There is, currently, strong interest in using 

corn to produce energy in the form of biofuels.  Because of modern society’s dependence on 

corn, it is important to gain a deeper understanding of the factors that have affected and will 

likely continue to affect corn yield over time. 

Corn yields have increased dramatically over the past century.  Illinois, for example, had 

an average yield of 41 bushels per acre in 1895, while in 2005 yields averaged 143 bushels per 

acre.  The past improvements in technology include the transition from open pollination to 

double cross hybrids and from double cross to single cross hybrids.  Other major contributions 

have come from the use of nitrogen fertilizers and the steady improvement in farm production 

practices.  In fact, Griliches (1957) used the adoption of hybrid corn as an example of the pattern 

and effects of the diffusion of technology. 

 This research will utilize data beginning in 1895 to model the trend of corn yield in the 

top seven corn producing states: Illinois, Indiana, Iowa, Minnesota, Missouri, Nebraska and 

Ohio.  The model will include variables for weather to enable study of the interaction between 

yield and weather.  Past research has found that weather can influence the effectiveness of 

innovation and can affect the year-to-year variability of corn yields (Perrin and Heady 1975).  A 

variety of variables representing weather have been used in the literature with mixed results.  

This research will use the Palmer Index, created by Wayne C. Palmer (1965), because the index 

incorporates temperature, precipitation, evapotranspiration, soil type and the conditions of the 

previous period.  There will be weather variables for two critical times in the biological process 



of corn; one for spring planting time and the other for July when corn is in stages of silk and 

dough (National Agricultural Statistics Service).   

There are four objectives of this research: 

1. To explore the use of a logistic time-varying regression approach to modeling 

corn yield data,   

2. To examine the influence of weather on yields and, as well, to attempt to 

determine if weather effects in corn yields have shifted over time,   

3. To examine the relative variance of corn yields over time to determine if yield 

variance has changed, and 

4. To compare a time-varying regression model to a model using a linear segmented 

trend. 

First, this paper explores the use of a logistic time-varying regression approach to 

modeling corn yield data.  The time-varying regression is a particular type of smooth transition 

regression.  Bacon and Watts (1971) were the first to suggest a smooth transition model to 

illustrate how experimental data which appear to behave according to different distinct linear 

relationships transition from one extreme linear parameterization to another as a function of the 

continuous transition variable.  The time-varying regression approach allows for nonlinear trends 

and, as well, requires that the trend, i.e., the proxy for technical change, be a bounded, 

monotonically increasing function (Teräsvirta 1996).  This approach seems particularly suitable 

to modeling corn yield.   

Second, the model will include variables representing weather.  Because weather 

influences corn production, it is necessary to control for these effects in the analysis.  Following 

Perrin and Heady (1975), this research will use the Palmer Index unlike most other research that 



has used elementary variables of temperature and precipitation.  The effects of the Palmer Index 

on corn yields will also be allowed to vary over time in an attempt to determine if there has been 

a shift in the sensitivity of yields to weather. 

Third, the relative variance of corn yields will be examined to see if they have become 

more or less variable over time.  Numerous studies (Perrin and Heady 1975; Offutt, Garcia et al. 

1987; Kim and Chavas 2003) have attempted to determine if there has been a change in yield 

variability, albeit with mixed results.  The current study will use a much longer timeline than 

nearly all previous studies on corn yield behavior, thereby allowing comparisons of the variance 

of the yield-weather relationship to be made from a period of minimal technology to today’s 

current level of sophistication. 

Fourth, in this research a comparison will be made between a logistic time-varying 

regression model and a model using segmented trends.  It is common practice for a segmented 

trend model beginning in 1940 to be used to model corn yields.  A comparison will be made 

based on goodness-of-fit criterion and the possibility of using a combination of the two models 

will be explored. 

2. Methodology 

To begin, consider a simple linear regression model 
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where β1 is the intercept and the βjs are the coefficients measuring the effect of the explanatory 

variables on yield.  As well, the xijs are explanatory variables, in this case including weather 

variables, and iε is an independently, identically distributed additive disturbance.  An assumption 

of the classic linear regression model is that the “unknown coefficients of this linear function 



form the vector β and are assumed to be constants" (Kennedy 2003).  The assumption of linearity 

must always be considered because linear models have been effective at approximating many 

socio-economic relationships.  Even so, there are situations for which the underlying economic 

relationship is not linear (Teräsvirta 1996).  Kennedy (2003) states that a violation of the 

linearity assumption would be a case of changing parameters.  In a time series problem, it is very 

likely that the parameters will change over time.  It is therefore necessary to construct a model 

that reflects this possibility.   

In the simplest case a linear trend term could be added to the model 
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where t is a trend.  This simple specification allows the intercept term β1 to change 

systematically over time.  That is, the “moving” intercept in the model is now β1 + θt.  This 

example represents a simple case of only allowing one parameter (i.e., the intercept term) to 

change in a linear fashion.  But what if parameter change is monotonic and bounded?  Following 

Teräsvirta (1996), a function G(t*;γ, c) that acts on the parameter θ is added to create a time 

varying regression model. That is, 
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where G(.) denotes the so-called transition function, a function that is, moreover, bounded 

between zero and unity.  In this case G(.) is a function of t*, where t* = 1/T.  That is, t* is a 

transition variable for the constant change of the intercept parameter over time.  The slope 

parameter, γ, indicates how rapidly the transition function moves from zero to one.  The location 

parameter, c, determines at what point in time the transition from zero to unity will be 50-percent 

complete.  The above is referred to as a time varying regression model, or TV-R, because it uses 



time as a transition variable instead of lagged yields or weather variables or other variables that 

might represent technological change. 

 If all of the parameters in the previous model are changing over time due, for example, to 

technical change, following Teräsvirta (1996) this change could be modeled simply as 
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In other words, all parameters would change over time and the transition function, G, weights the 

parameters so that the switch from one regime to the next is smooth. 

Teräsvirta and Anderson (1992) suggest a logistic function and when it is used with (1) is 

known as a logistic TV-R model, or LTV-R. 
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LTV-R models allow the parameters to change, potentially, monotonically with t*.  The 

LTV-R function is S-shaped and because it is not linear, the slope coefficient, γ, is not constant 

and as the LTV-R function moves through time it smoothly transitions regimes showing periods 

of small adjustment with little slope, small γ coefficients, and other periods of dramatic 

adjustment with large γ coefficients.  Applied to the corn yield models, an LTV-R model 

describes a situation where a transition from one technology regime to the next will be smooth.   

Tests for Model Selection 

The model selection criterion used is the Akaike information criterion (AIC).  According 

to Greene (2003), the AIC is preferred to the adjusted R2 because there is some question about 

whether the adjusted R2 has a penalty large enough “to ensure that the criterion will necessarily 

lead the analyst to the correct model as sample size increases”.  The AIC will improve as “R2 



increases, but, degrade as model size increases” (Greene 2003). The value of the AIC declines as 

the model improves.  The formula for the AIC is ( ) ( ) nK
Y eRSKAIC /222 1−= .   

The Likelihood Dominance Criterion was used in comparison and selection.  Pollak and 

Wales (1991) defined the mechanically nested model to be used to compare and rank two 

competing hypotheses.  The process of comparison is done in three steps.  First, to choose the 

first hypothesis over the second hypothesis: 

2/)]1()1([ 1212 +−+<− nCnCLL  

where L is a log-likelihood function value, C(.) is a chi-squared critical value and ni is number of 

independent variables in the ith model. 

Second, there is indecision between the two hypotheses if: 

2/)]1()1([)1()1([ 121212 +−+≥−≥−+− nCnCLLCnnC  

Finally, if the second hypothesis dominates the first hypothesis then: 

2/)]1()1([ 1212 CnnCLL −+−>−  

Maximum Likelihood Estimation  

Maximum Likelihood Estimation (MLE) methods are used to estimate the parameters in 

the LTVR model proposed.  MLE is an appropriate choice because, in many cases, adopting the 

maximum likelihood criterion automatically generates estimates that conform to other estimating 

criteria, such as: consistency, asymptotic normality, asymptotic efficiency, and invariance 

(Greene 2003).  MLE also brings the added advantage that heteroskedasticity in the variance 

may be readily accounted for, assuming that the distribution of the errors is known (Wooldridge 

2003). 



Beginning with a simple equation showing yi, the dependent variable, it is assumed that 

the (possibly nonlinear) model giving the predicted values for y may be written as ( ih x )β .  By 

appending an additive error term, and under the assumption of normality, the model is now 

( ) ,i iy h x i= +β ε   

( )2~ 0, , 1, ,i N iσ = Kε n . 

Let ( if )ε β

i

 denote the probability density function (pdf) associated with the disturbance 

term,ε , conditional on parameters β .  Assuming that ( )if ε β  follows a normal distribution, the 

model becomes 
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From an econometric viewpoint, the typical goal is to maximize the likelihood function with 

respect to the unknown parameters β.  Given the assumption that the disturbance terms are 

independently and identically distributed, the likelihood function for a random sample of size n, 

which in this case may be written as: 
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For various reasons it is often more convenient to work with the log likelihood function, which 

may be expressed in this case as 
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Of course, in the present case the maximum likelihood problem is equivalent to estimating the 

parameters in ( ih x )β  by using least squares. 



 The picture changes, however, if the included 'siε  are heteroskedastic, that is, if it is 

concluded that .  For example, it might be specified that( )2~ 0, , 1, ,i iN iσ = Kε n ( )2 ,i ig xσ = θ , 

where θ is a set of parameters that dictate how 2
iσ  changes with xi. In this case, the log likelihood 

function in (2) becomes 
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Assuming that functional forms for ( )ih x β  and ( ),ig x θ  can be specified, it is then possible to 

use nonlinear estimation methods in conjunction with (3) to obtain parameter estimates for the 

mean and variance of corn yields.  This approach will be pursued in this study. 

 

3. Logistic Time Varying Regression Model Results 

The equation for the logistic time-varying regression model is  
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where the α parameters are the coefficients when the transition function, G, is zero, JPI is the 

July Palmer Index value, AMPI is the variable for the average of the Palmer Index values for 

April and May, G is the transition function, and ε is an additive error term.   

The model for G, the transition function, is 
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where G is a monotonically increasing function of t*, t* is the transition variable for the constant 

change of the parameters over time, γ is the slope parameter indicating how rapid the transition 

from zero to one is as a function of t*, and c is the location parameter determining where the 

transition occurs as a function of t*. 

 The model for standard deviation is  

*4321 tAMPIJPI iii ηηηησ +++=  

The model for standard deviation is squared so that the variance changes over time with the 

variables for weather and the transition variable, t*. 

Plots of the time-varying logistic function for each of the estimated LTVR models were 

created (Figure 1).  The figures exhibit several interesting points.  First, the steepness of the 

curve shows the rapidity of yield increases over time.  Second, the functions reveal the 

approximate point in time when the trend yield adjustments obtain the 50% level.  Third, they 

display how much of the potential adjustment amount was reached in 2005.  The logistic time-

varying regression function for Illinois shows that in 2005 yields have reached 90% of full 

potential.  The logistic time-varying regression function for Indiana shows that by 2005, corn 

yields had attained 97% of the total potential.  For Iowa, the logistic time-varying regression 

function shows that by 2005, yields had achieved 89% of the total adjustment amount.  The 

logistic time-varying regression function for Minnesota shows that by 2005, yields had only 

achieved 69% of the total adjustment amount.  The difference in the trend in Minnesota can, in 

part, be explained by the fact that, according to data from NASS, harvested acres has increased 

more in that state over the period of study than the other states.  For Missouri, the logistic time-

varying regression function shows that by 2005, yields had achieved 94% of the total adjustment 

amount.  The logistic time-varying regression function for Nebraska shows that by 2005, yields 



had achieved 97% of the total adjustment amount.  For Ohio, the logistic time-varying regression 

function shows that by 2005, yields had achieved 92% of the total adjustment amount.   

 

 The Logistic Time-Varying Regression Weather Parameters 

In the regression results just reviewed it was found that the β coefficient values are 

greater, in absolute terms, than the α coefficient values.  This means that the influence of weather 

in the latter part of the sample was typically stronger than in the beginning of the sample.  The 

imputed values for these coefficients at each point in time were therefore determined.  The 

imputed value for the July Palmer Index at any point in time is simply 

( ) ( )( ) ( )( )**1 22 ttJPIf βα +−= , 

where α2 is the coefficient of the July Palmer Index for the early portion of the sample, t* is the 

time trend and β2 is the coefficient of the July Palmer Index at the latter part of the time period.  

Likewise, the imputed value for the April-May Palmer Index at any point in time is 

( ) ( )( ) ( )( )**1 33 ttAMPIf βα +−= . 

These imputed parameter values may then be plotted against time. 

This section contains graphs in Figure 2 for each state showing the trend in these 

parameters over time.  Each figure has the parameter values for the July Palmer Index and for the 

April-May Palmer Index.  The July line is the top of the graph because those values are typically 

positive and the April line is on bottom, because those values are typically negative.  All of the 

states show an increase in yield sensitivity to weather.  This is in contrast to that of Perrin and 

Heady (1975) where they stated that the direct effect of moisture stress has not changed.   Perrin 

and Heady did find evidence that an increased impact through indirect effects may have begun to 

occur in Illinois due to increased use of nitrogen.  Illinois, Indiana, Iowa and Ohio begin with 



fairly small parameters values that increase noticeably over time.  The figure for Minnesota 

reflects the fact that the weather parameters are not significant in the early portion of the model.  

The graph for Missouri shows that the weather parameters are greater in the beginning as 

compared to the other states and do not change as dramatically.  The graph for Nebraska shows 

the weather parameter for April-May increased more dramatically than the parameter for July.  A 

possible explanation is that irrigation is commonly used in this state, which would reduce the 

influence of weather in July. 

 Coefficient of Variation for Logistic Time-Varying Regression Model 

An objective of this research was to find if the relative variability of corn yields had 

decreased over time.  The coefficient of variation represents the relative variance.  Relative 

variance is more important to study in this case than the absolute variance because of the 

dramatic increase in total yields over the 111 year period.  To find the moving intercept for the 

coefficient of variation divide the moving intercept of the standard deviation by the moving 

intercept of the mean.  The model for the moving intercept of the coefficient of variation is  
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In every state, the moving intercept for the coefficient of variation peaks from 1935 to 1940 and 

appears to have stabilized over the past 20 years.  These results are in concurrence with the 

findings of Offutt, et al. (1987).  This section contains graphs of the coefficient of variation for 

each state in Figure 3. Each figure displays the coefficient of variation over time and the moving 

intercept of the coefficient of variation.  The more dispersed the coefficient of variation is around 

the moving intercept indicates greater relative variance.   



4. Comparison of the LTVR Model to a Model with Segmented Trend 

Many economists have argued that a segmented trend beginning in 1940 could, and 

perhaps should, be used to model corn yields over time.  This conjecture was examined by 

creating a segmented trend for all of the states and then comparing those regression results with 

that of the LTVR model.  The segmented trend model was specified by interacting a dummy 

variable that contains “0” prior to 1940 and “1” thereafter with the other parameters in the 

model.  That is, the model for the segmented trend is  

( ) ( )( ) ( )[ ]401*4321 DUMtAMPIJPIrendsegmentedtf tt −×+++= αααα   
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 where α1 is the intercept for the beginning of the time period, α 4 is the coefficient for a trend 

term, β1 is the intercept for the latter portion of the period and β4 is the trend coefficient. 

There are also economists that question the existence of a trend in corn yields prior to 

1940, and therefore, inclusion of a trend term for the early period is examined.  Lur is the log 

likelihood value of the unrestricted model including a trend term for the early period.  Lr is the 

log likelihood value for the model restricted to exclude the early trend term, α4(t*).  The 

likelihood ratio and corresponding p-values are calculated.  Table 1 displays the results where 

Illinois, Iowa, Nebraska and Ohio show no evidence, at the 5% level, that there is trend in corn 

yields prior to 1940.  There is trend in corn yields prior to 1940 in Indiana, Minnesota and 

Missouri.   

In Figure 4, the segmented trend is plotted along with the moving intercept of the LTVR 

model and the actual yield observations.  For most of the states, except Minnesota, the moving 

intercept is below the segmented trend by 2005.   

 Comparing the LTVR Model to the Model with Segmented Trend 



 The regression results of the model with segmented trend are compared to those of the 

LTVR model.  The criterion used for comparison is the likelihood function value, the Akaike 

Information Criterion, and the Likelihood Dominance Criterion.  The likelihood function value 

should only be used in states with the same numbers of parameters because, by definition, a 

model with a greater number of parameters should have a higher likelihood value.  Recall that 

the difference in the numbers of parameters comes from the inclusion or exclusion of the trend 

term in the early period.  The Akaike Information Criterion (AIC) can be used for comparison in 

every case because it is adjusted for the number of parameters and will, by design, punish models 

that are over-parameterization.  The final value for comparing the Likelihood Dominance 

Criterion and the steps for this calculation are outlined in the methodology chapter.  It is 

appropriate to use the Likelihood Dominance Criterion when there are different numbers of 

parameters.  When the models have the same number of parameters, the criterion dictates that 

whichever has the highest likelihood value is the better model.  In Table 2, first compare the 

value of the difference in the likelihood function values to the value in the following column, 

labeled [C(n2+1)-C(n1+1)]/2.  If the difference is less than [C(n2+1)-C(n1+1)]/2, then choose the 

segmented trend model over the LTVR model.  Next, compare the value of the difference in 

likelihood values to the last column, labeled [C(n2-n1+1)-C(1)]/2.  If the value in the difference 

between the likelihood values is greater than the value from [C(n2-n1+1)-C(1)]/2 then choose the 

LTVR model over the segmented model.  

Table 2 shows the comparison criterion for each state.  For Illinois, the likelihood 

function values cannot be compared because of the difference in the number of parameters, the 

AIC indicates that the segmented model is preferred, but the results of the Likelihood 

Dominance Criterion are mixed.  Therefore, Illinois has a slight preference for a model with 



segmented trend.  For Indiana, the LTVR model has a greater likelihood function value, better 

AIC value and the likelihood dominance criterion defers to the likelihood values.  Based on this 

criterion, the LTVR model is better suited to the data for Indiana.  For Iowa, the likelihood 

values cannot be compared, the segmented model has a higher AIC value and the likelihood 

dominance criterion indicate that the segmented trend is better for this state.  For Minnesota, the 

LTVR model is more suitable based on the likelihood values and the AICs.  In Missouri, the 

likelihood values and AICs give evidence that the segmented trend is better.  All criterions for 

comparison indicate that the LTVR model does a better job explaining the yield data in 

Nebraska.  Finally, the criterions for Ohio imply that the model with segmented trend is more 

appropriate. 

Encompassing Regressions 

 Due to the close comparisons in some of the states, the opportunity to use a combination 

of these two models was explored.  This equation shows an encompassing regression. 

0 1 2t LTVR SEGMENTED
t t

y y y
∧ ∧   = α + α + α + ε   

   
 

where y is the actual yield data,  is the predicted values from the LTVR model,   

is the predicted values from the segmented model, and ε is an additive error term.  By regressing 

the actual yield on the predicted values from both of the models in combination, the significance 

of the two models in explaining the change in yield is found.  In Table 3, the results of the 

regressions for each state are shown.  The LTVR model is significant, at the 5% level, for all of 

the states, except Iowa.  The segmented model is significant in Indiana, Iowa, Missouri and 

Nebraska.  These results suggest that some weighted combination of the LTVR and segmented 

models should be used. 

LTVRy
∧

SEGMENTEDy
∧



5. Summary and Conclusions 

In this paper, we explored the use of logistic time-varying regression approach for 

modeling corn yield behavior.  We found that the smooth transition model did indeed capture 

the transition from one regime of corn technology to the next quite nicely.  Using the LTVR 

approach, the weather parameters were allowed to change over time and the subsequent plots 

showed an increase in yield sensitivity to weather.  A potential reason for this could be that 

with the improvement in technology and farm management practices, a greater portion of the 

variability is caused by weather today than in the past. The relative variance decreased for all 

of the states but, the dispersion of the coefficient of variation around the moving intercept 

trend has increased indicating that weather and other factors not included in the model are 

causing the variability. 

The comparison of the LTVR model to that of a segmented trend had mixed results.  

Various criterion were used to determine which was more suitable and because the 

diagnostics were so similar, an encompassing regression was computed.  The encompassing 

regression found that the LTVR model was significant in explaining the variability of corn 

yields in every state, except Iowa.  In the context of using these models to forecast, 

exclusively using a model with segmented trend would “over-predict” the potential future 

yields.  This research suggests using a weighted combination of the two models would be 

ideal if the goal is to predict potential yields. 
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Table 3. The Results of the Encompassing Regressions. 

Coefficient Std. Error T-Statis tic P-Value
cons tant -0.019 0.028 0.701 0.485
Predicted LTVR 0.599 0.262 2.287 0.024
Predicted Segmented 0.409 0.255 1.600 0.113
R2

0.942

Coefficient Std. Error T-Statis tic P-Value
cons tant -0.004 0.025 0.167 0.868
Predicted LTVR 0.601 0.170 3.541 0.001
Predicted Segmented 0.401 0.171 2.346 0.021
R2

0.951

Coefficient Std. Error T-Statis tic P-Value
cons tant -0.001 0.032 0.024 0.981

R2 0.947

Iowa

Illinois

Indiana

Predicted LTVR 0.291 0.323 0.902 0.369
Predicted Segmented 0.712 0.321 2.218 0.029
R2

0.923

Coefficient Std. Error T-Statis tic P-Value
cons tant -0.015 0.031 0.498 0.619
Predicted LTVR 0.686 0.216 3.180 0.002
Predicted Segmented 0.328 0.223 1.471 0.144
R2

0.932

Coefficient Std. Error T-Statis tic P-Value
cons tant -0.003 0.032 0.092 0.927
Predicted LTVR 0.557 0.198 2.820 0.006
Predicted Segmented 0.442 0.194 2.275 0.025
R2

0.928

Coefficient Std. Error T-Statis tic P-Value
cons tant -0.006 0.021 0.283 0.778
Predicted LTVR 0.716 0.147 4.883 0.000
Predicted Segmented 0.288 0.147 1.960 0.053
R2

0.969

Coefficient Std. Error T-Statis tic P-Value
cons tant -0.011 0.026 0.435 0.664
Predicted LTVR 0.654 0.232 2.819 0.006
Predicted Segmented 0.355 0.233 1.527 0.130

Ohio

Minnesota

Missouri

Nebraska
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Figure a. Illinois LTVR. 
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Figure b. Indiana LTVR. 
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Figure c. Iowa LTVR.  
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Figure d. Minnesota LTVR.  
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Figure e. Missouri LTVR.  
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Figure f. Nebraska LTVR. 
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Figure g. Ohio LTVR. 

  
Figure 1. The logistic time varying function of the conditional mean. 
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Figure a. Illinois weather parameters over  time.  
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Figure b. Indiana weather parameters over time.   
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Figure c. Iowa weather parameters over time.  
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JPDSI AMPDSI  
Figure d. Minnesota weather parameters over time.  
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JPDSI AMPDSI  
Figure e. Missouri weather parameters over time.  
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JPDSI AMPDSI  
Figure f. Nebraska weather parameters over time.   
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Figure g. Ohio weather parameters over time.   

  
Figure 2. The figures for all of the states showing how the weather parameters change over time. 
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Figure a. Illinois coefficient of variation 
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Figure b. Indiana coefficient of variation 
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Figure c. Iowa coefficient of variation 
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Figure d. Minnesota coefficient of variation 
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Figure e. Missouri coefficient of variation  
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Figure f. Nebraska coefficient of variation 
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Figure g. Ohio  coefficient of variation 

  

Figure 3. The graphs of the coefficient of variation for the seven states. 
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Figure a. Illinois. 
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Figure b Indiana. 
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Figure c. Iowa. 
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Figure d. Minnesota. 
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Figure f. Missouri. 
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Figure g. Nebraska. 
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Figure h. Ohio. 

  

Figure 4. The plot of the segmented trend, moving intercept, and normalized yields. 
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