1,669 research outputs found

    Analysis of dilepton production in Au+Au collisions at sqrt(s_NN)=200 GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach

    Get PDF
    We address dilepton production in Au+Au collisions at sqrt(s_NN)=200 GeV by employing the parton-hadron-string dynamics (PHSD) off-shell transport approach. Within the PHSD one goes beyond the quasiparticle approximation by solving generalized transport equations on the basis of the off-shell Kadanoff-Baym equations for the Green's functions in the phase-space representation. The approach consistently describes the full evolution of a relativistic heavy-ion collision from the initial hard scatterings and string formation through the dynamical deconfinement phase transition to the quark-gluon plasma (QGP) as well as hadronization and to the subsequent interactions in the hadronic phase. {With partons described in the PHSD by the dynamical quasiparticle model (DQPM) - matched to reproduce lattice QCD results in thermodynamic equilibrium} - we calculate, in particular, the dilepton radiation from partonic interactions through the reactions q+qbar->gamma^*, q+qbar->gamma^*+g and q+g->gamma^*+q (qbar+g->gamma^*+qbar) in the early stage of relativistic heavy-ion collisions. By comparing our results to the data from the PHENIX Collaboration, we study the relative importance of different dilepton production mechanisms and point out the regions in phase space where partonic channels are dominant. Furthermore, explicit predictions are presented for dileptons within the acceptance of the STAR detector system and compared to the preliminary data.Comment: 11 pages, 10 figures. arXiv admin note: substantial text overlap with arXiv:1107.340

    The pulsating hot subdwarf Balloon 090100001: results of the 2005 multisite campaign

    Full text link
    We present the results of a multisite photometric campaign on the pulsating sdB star Balloon 090100001. The star is one of the two known hybrid hot subdwarfs with both long- and short-period oscillations. The campaign involved eight telescopes with three obtaining UBVR data, four B-band data, and one Stromgren uvby photometry. The campaign covered 48 nights, providing a temporal resolution of 0.36microHz with a detection threshold of about 0.2mmag in B-filter data. Balloon 090100001 has the richest pulsation spectrum of any known pulsating subdwarf B star and our analysis detected 114 frequencies including 97 independent and 17 combination ones. The strongest mode (f_1) in the 2.8mHz region is most likely radial while the remaining ones in this region form two nearly symmetric multiplets: a triplet and quintuplet, attributed to rotationally split \ell=1 and 2 modes, respectively. We find clear increases of splitting in both multiplets between the 2004 and 2005 observing campaigns, amounting to 15% on average. The observed splittings imply that the rotational rate in Bal09 depends on stellar latitude and is the fastest on the equator. We use a small grid of models to constrain the main mode (f_1), which most likely represents the radial fundamental pulsation. The groups of p-mode frequencies appear to lie in the vicinity of consecutive radial overtones, up to the third one. Despite the large number of g-mode frequencies observed, we failed to identify them, most likely because of the disruption of asymptotic behaviour by mode trapping. The observed frequencies were not, however, fully exploited in terms of seismic analysis which should be done in the future with a larger grid of reliable evolutionary models of hot subdwarfs.Comment: accepted for publication in MNRA

    DEFICIENCIES IN THE REQUIREMENT GENERATION PHASE THAT DELAY THE LEAD TIME OF ARMY CONTRACT ACTIONS

    Get PDF
    The purpose of this mixed-methodology study is to identify opportunities to reduce administrative requirements lead time for contracting actions at Army Contracting Command (ACC) organizations, at CONUS installation level, for future implementation across ACC units. An analysis of FY19–21 reveals issues in the training resources available to operational contract support personnel that degrade critical contract elements, increasing the procurement action lead time for service requirements. The findings show service contracts have a longer requirements generation phase than supply contracts. The longer requirements generation phase is associated with the level of complexity and required documentation for each contract action. As complexity decreases, requirements lead time also decreases. The research further reveals an inverse relationship between the use of standardized resource tools and requirements lead time; the lead time decreased as utilization rates increased. The results of the research indicate that policy implementation and consolidation of standardized resource tools would have a reductive effect on lead time for contract actions within the ACC. Additionally, the research recommends modifying the training curriculum to focus on the requirements generation phase. Furthermore, the research recommends changing table of organization and equipment (TOE) positions to require the additional skill identifier 3C for all S4s/G4s and supply sergeants at every echelon.Major, United States ArmyMajor, United States ArmyMajor, United States ArmyMajor, United States ArmyMajor, United States ArmyApproved for public release. Distribution is unlimited

    Effect of isovector-scalar meson on neutron star matter in strong magnetic fields

    Get PDF
    We study the effects of isovector-scalar meson δ\delta on the equation of state (EOS) of neutron star matter in strong magnetic fields. The EOS of neutron-star matter and nucleon effective masses are calculated in the framework of Lagrangian field theory, which is solved within the mean-field approximation. From the numerical results one can find that the δ\delta-field leads to a remarkable splitting of proton and neutron effective masses. The strength of δ\delta-field decreases with the increasing of the magnetic field and is little at ultrastrong field. The proton effective mass is highly influenced by magnetic fields, while the effect of magnetic fields on the neutron effective mass is negligible. The EOS turns out to be stiffer at B<1015B < 10^{15}G but becomes softer at stronger magnetic field after including the δ\delta-field. The AMM terms can affect the system merely at ultrastrong magnetic field(B>1019B > 10^{19}G). In the range of 101510^{15} G -- 101810^{18} G the properties of neutron-star matter are found to be similar with those without magnetic fields.Comment: 26 pages, 9 figure

    Coulomb effects on growth of instabilities in asymmetric nuclear matter

    Get PDF
    We study the effects of the Coulomb interaction on the growth of unstable modes in asymmetric nuclear matter. In order to compare with previous calculations we use a semiclassical approach based on the linearized Vlasov equation. Moreover, a quantum calculation is performed within the R.P.A.. The Coulomb effects are a slowing down of the growth and the occurrence of a minimal wave vector for the onset of the instabilities. The quantum corrections cause a further decrease of the growth rates.Comment: 10 pages, revtex, 4 ps figures, to appear in Phys. Rev. C e-mail: [email protected], [email protected]

    A phenomenological equation of state for isospin asymmetric nuclear matter

    Full text link
    A phenomenological momentum-independent (MID) model is constructed to describe the equation of state (EOS) for isospin asymmetric nuclear matter, especially the density dependence of the nuclear symmetry energy Esym(ρ)E_{\text{\textrm{sym}}}(\rho). This model can reasonably describe the general properties of the EOS for symmetric nuclear matter and the symmetry energy predicted by both the sophisticated isospin and momentum dependent MDI model and the Skyrme-Hartree-Fock approach. We find that there exists a nicely linear correlation between KsymK_{\mathrm{sym}} and LL as well as between J0/K0J_{0}/K_{0} and K0K_{0}, where LL and KsymK_{\mathrm{sym}} represent, respectively, the slope and curvature parameters of the symmetry energy at the normal nuclear density ρ0\rho_{0} while K0K_{0} and J0J_{0} are, respectively, the incompressibility and the third-order derivative parameter of symmetric nuclear matter at ρ0\rho_{0}. These correlations together with the empirical constraints on K0K_{0}, LL and Esym(ρ0)E_{\text{\textrm{sym}}}(\rho_{0}) lead to an estimation of -477 MeV Ksat,2241\leq K_{\mathrm{sat,2}}\leq -241 MeV for the second-order isospin asymmetry expansion coefficient for the incompressibility of asymmetric nuclear matter at the saturation point.Comment: 9 pages, 4 figures, contribution to Special Topic on Large-Scale Scientific Facilities (LSSF) in Science in China Series G: Physics, Mechanics & Astronom

    Higher order bulk characteristic parameters of asymmetric nuclear matter

    Full text link
    The bulk parameters characterizing the energy of symmetric nuclear matter and the symmetry energy defined at normal nuclear density ρ0\rho_0 provide important information on the equation of state (EOS) of isospin asymmetric nuclear matter. While significant progress has been made in determining some lower order bulk characteristic parameters, such as the energy E0(ρ0)E_0(\rho_0) and incompressibility K0K_0 of symmetric nuclear matter as well as the symmetry energy Esym(ρ0)E_{sym}(\rho_0) and its slope parameter LL, yet the higher order bulk characteristic parameters are still poorly known. Here, we analyze the correlations between the lower and higher order bulk characteristic parameters within the framework of Skyrme Hartree-Fock energy density functional and then estimate the values of some higher order bulk characteristic parameters. In particular, we obtain J0=355±95J_0=-355 \pm 95 MeV and I0=1473±680I_0=1473 \pm 680 MeV for the third-order and fourth-order derivative parameters of symmetric nuclear matter at ρ0\rho_0 and Ksym=100±165K_{sym} = -100 \pm 165 MeV, Jsym=224±385J_{sym} = 224 \pm 385 MeV, Isym=1309±2025I_{sym} = -1309 \pm 2025 MeV for the curvature parameter, third-order and fourth-order derivative parameters of the symmetry energy at ρ0\rho_0 , using the empirical constraints on E0(ρ0)E_0(\rho_0), K0K_0, Esym(ρ0)E_{sym}(\rho_0), LL, and the isoscalar and isovector nucleon effective masses. Furthermore, our results indicate that the three parameters E0(ρ0)E_0(\rho_0), K0K_0, and J0J_0 can reasonably characterize the EOS of symmetric nuclear matter up to 2ρ02\rho_0 while the symmetry energy up to 2ρ02\rho_0 can be well described by Esym(ρ0)E_{sym}(\rho_0), LL, and KsymK_{sym}.Comment: 6 pages, 7 figures. Typos fixed. Contribution to a special issue in Science China: Physics, Mechanics & Astronom

    Space-time analysis of reaction at RHIC

    Full text link
    Space-time information about the Au-Au collisions produced at RHIC are key tools to understand the evolution of the system and especially assess the presence of collective behaviors. Using a parameterization of the system's final state relying on collective expansion, we show that pion source radii can be tied together with transverse mass spectra and elliptic flow within the same framework. The consistency between these different measures provide a solid ground to understand the characteristics of collective flow and especially the possible peculiar behavior of particles such as Xi, Omega or phi. The validity of the short time scales that are extracted from fits to the pion source size is also addressed. The wealth of new data that will soon be available from Au-Au collisions at sqrt{s_{NN}} = 200 GeV, will provide a stringet test of the space-time analysis framework developped in these proceedings.Comment: Invited talk given at the SQM2003 conference (March 2003), to be published in Journal of Physics G. 10 pages, 3 figure

    Strongly damped nuclear collisions: zero or first sound ?

    Get PDF
    The relaxation of the collective quadrupole motion in the initial stage of a central heavy ion collision at beam energies Elab=5÷20E_{lab}=5\div20 AMeV is studied within a microscopic kinetic transport model. The damping rate is shown to be a non-monotonic function of E_{lab} for a given pair of colliding nuclei. This fact is interpreted as a manifestation of the zero-to-first sound transition in a finite nuclear system.Comment: 15 pages, 4 figure
    corecore