224 research outputs found
International agricultural research and climate change: A focus on tropical systems
Global awareness and recognition of climate change has grown significantly over the past several years. Recent reports have pointed to the fact that, whilst there will be some winners, in general developing countries will suffer most from the negative impacts of climate change (IPCC, 2007 and Stern, 2007). It has become obvious that the UNFCCC and its Kyoto Protocol will not be sufficiently effective to halt the increase of atmospheric greenhouse gas (GHG) concentrations, and we must now accept that the primary drivers of climate change are not going to stop. Mitigation efforts directed at these primary drivers will therefore only provide a partial softening of the effects of climate change. Local climates and terrestrial ecosystems will change, in many cases threatening human livelihoods. Yet, even as climate changes, food and fibre production, environmental services and rural livelihoods in developing countries must improve, not just be maintained. The status quo in the developing world is not acceptable. Developing countries are currently faced with urgent needs for development to improve food security, reduce poverty and provide an adequate standard of living for growing populations. Addressing these urgent and current development priorities must now be combined with a consideration of the impact of a changing climate on development policies and innovation
Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. benthamiana leaves
AbstractExperiments were conducted to compare the plasmodesmal transport activities of Potato virus X (PVX) TGBp1 and coat protein (CP) in several plant species. Microinjection experiments indicated that TGBp1 gates plasmodesmata in Nicotiana tabacum leaves. These results support previous microinjection studies indicating that TGBp1 gates plasmodesmata in Nicotiana benthamiana and Nicotiana clevelandii leaves. To study protein movement, plasmids expressing the green fluorescent protein (GFP) gene fused to the PVX TGBp1 or CP genes were biolistically bombarded to leaves taken from four different PVX host species. GFP/TGBp1 moved between adjacent cells in N. tabacum, N. clevelandii, N. benthamiana, and Lycopersicon esculentum, whereas GFP/CP moved only in N. benthamiana leaves. Mutations m12 and m13 were introduced into the TGBp1 gene and both mutations eliminated TGBp1 ATPase active site motifs, inhibited PVX movement, reduced GFP/TGBp1 cell-to-cell movement in N. benthamiana leaves, and eliminated GFP/TGBp1 movement in N. tabacum, N. clevelandii, and L. esculentum leaves. GFP/TGBp1m13 formed aggregates in tobacco cells. The ability of GFP/CP and mutant GFP/TGBp1 fusion proteins to move in N. benthamiana and not in the other PVX host species suggests that N. benthamiana plants have a unique ability to promote protein intercellular movement
Adaptation to Climate Change through Sustainable Management and Development of Agroforestry Systems
This paper describes the potential role of agroforestry systems in the adaptation to expected changes in climate by smallholder farmers in the tropical regions in general and in sub-Saharan Africa in particular. There is enough scientific evidence to conclude that climate change is happening and to link climate change with the observed changes in the earth's physical systems. Agriculture is one of the high priority sectors where the impacts of climate change exceed tolerance limits with implications for the livelihoods of millions of smallholder farmers dependent on this sector. Agroforestry interventions, because of their ability to provide economic and environmental benefits, are considered to be the best âno regretsâ measures in making communities adapt and become resilient to the impacts of climate change. The important elements of agroforestry systems that can play a significant role in the adaptation to climate change include changes in the microclimate, protection through provision of permanent cover, opportunities for diversification of the agricultural systems, improving efficiency of use of soil, water and climatic resources, contribution to soil fertility improvement, reducing carbon emissions and increasing sequestration, and promoting gender equity. These are discussed and limitations are highlighted. While agroforestry systems clearly offer economic and ecological advantages, the development of robust systems compliant with stakeholder needs and requirements is constrained by our limited understanding of the tradeoffs between subsistence requirements, acceptable risks, and the costs involved
Fuelwood savings and carbon emission reductions by the use of improved cooking stoves in an Afromontane forest, Ethiopia
In many Sub-Saharan African countries, fuelwood collection is among the most important drivers of deforestation and particularly forest degradation. In a detailed field study in the Kafa region of southern Ethiopia, we assessed the potential of efficient cooking stoves to mitigate the negative impacts of fuelwood harvesting on forests. Eleven thousand improved cooking stoves (ICS), specifically designed for baking Ethiopiaâs staple food injera, referred to locally as âMirtâ stoves, have been distributed here. We found a high acceptance rate of the stove. One hundred forty interviews, including users and non-users of the ICS, revealed fuelwood savings of nearly 40% in injera preparation compared to the traditional three-stone fire, leading to a total annual savings of 1.28 tons of fuelwood per household. Considering the approximated share of fuelwood from unsustainable sources, these savings translate to 11,800 tons of CO2 saved for 11,156 disseminated ICS, corresponding to the amount of carbon stored in over 30 ha of local forest. We further found that stove efficiency increased with longer injera baking sessions, which shows a way of optimizing fuelwood savings by adapted usage of ICS. Our study confirms that efficient cooking stoves, if well adapted to the local cooking habits, can make a significant contribution to the conservation of forests and the avoidance of carbon emission from forest clearing and degradation
A step-wise framework for setting REDD+ forest reference emission levels and forest reference levels
Independent data for transparent monitoring of greenhouse gas emissions from the land use sector â What do stakeholders think and need?
The agriculture, forestry and other land use (AFOLU) sectors contribute substantially to the net global anthropogenic greenhouse gas (GHG) emissions. To reduce these emissions under the Paris Agreement, effective mitigation actions are needed that require engagement of multiple stakeholders. Emission reduction also requires that accurate, consistent and comparable datasets are available for transparent reference and progress monitoring. Availability of free and open datasets and portals (referred to as independent data) increases, offering opportunities for improving and reconciling estimates of GHG emissions and mitigation options. Through an online survey, we investigated stakeholdersâ data needs for estimating forest area and change, forest biomass and emission factors, and AFOLU GHG emissions. The survey was completed by 359 respondents from governmental, intergovernmental and non-governmental organizations, research institutes and universities, and public and private companies. These can be grouped into data users and data providers. Our results show that current open and freely available datasets and portals are only able to fulfil stakeholder needs to a certain degree. Users require a) detailed documentation regarding the scope and usability of the data, b) comparability between alternative data sources, c) uncertainty estimates for evaluating mitigation options, d) more region-specific and detailed data with higher accuracy for sub-national application, e) regular updates and continuity for establishing consistent time series. These requirements are found to be key elements for increasing overall transparency of data sources, definitions, methodologies and assumptions, which is required under the Paris Agreement. Raising awareness and improving data availability through centralized platforms are important for increasing engagement of data users. In countries with low capacities, independent data can support countriesâ mitigation planning and implementation, and related GHG reporting. However, there is a strong need for further guidance and capacity development (i.e. âreadiness supportâ) on how to make proper use of independent datasets. Continued investments will be needed to sustain programmes and keep improving datasets to serve the objectives of the many stakeholders involved in climate change mitigation and should focus on increased accessibility and transparency of data to encourage stakeholder involvement
The Role of Agriculture in the UN Climate Talks
Agriculture, and consequently food security and livelihoods, is already being affected by climate change, according to latest science from the IPCC. The various strands of work already underway on agriculture within the UNFCCC process can be strengthened and made more coherent. A 2015 climate agreement should reference food production and provide the financial, technical and capacity building support for countries to devise ambitious actions for the agricultural sector. A new climate agreement should be consistent with the Sustainable Development Goal (SDG) proces
Progress on agriculture in the UN climate talks: How COP21 can ensure a food-secure future
Agriculture, and consequently food security and livelihoods, is already being affected by climate change, according to latest science from the IPCC (Porter et al. 2014). The IPCC agrees that the world needs to produce at least 50% more food than we do today in order to meet the goal of feeding a projected 9 billion people by 2050. This must be achieved in the face of climatic variability and change, growing constraints on water and land for crops and livestock, and declining wild capture fishery stocks.
Although the protection of food security lies within the core objective of the United Nations Framework Convention on Climate Change (UNFCCC) (Article 2), formal arrangements for addressing agriculture within COP21 are unlikely. CGIAR would welcome the strengthening of aspirations for food security through action on mitigation and adaptation within a new agreement. We recognise that the new climate agreement is unlikely to be prescriptive about how adaptation in agriculture is supported and how agriculture might contribute to emission cuts. These issues are addressed within countriesâ INDCs and determined at national level
Quantifying the contribution of land use to N2O, NO and CO2 fluxes in a montane forest ecosystem of Kenya
Increasing demand for food and fibre by the growing human population is driving significant land use (LU) change from forest into intensively managed land systems in tropical areas. But empirical evidence on the extent to which such changes affect the soil-atmosphere exchange of trace gases is still scarce, especially in Africa. We investigated the effect of LU on soil trace gas production in the Mau Forest Complex region, Kenya. Intact soil cores were taken from natural forest, commercial and smallholder tea plantations, eucalyptus plantations and grazing lands, and were incubated in the lab under different soil moisture conditions. Soil fluxes of nitrous oxide (N2O), nitric oxide (NO) and carbon dioxide (CO2) were quantified, and we approximated annual estimates of soil N2O and NO fluxes using soil moisture values measured in situ. Forest and eucalyptus plantations yielded annual fluxes of 0.3-1.3 kg N2O-N ha(-1) a(-1) and 1.5-5.2 kg NO-N ha(-1) a(-1). Soils of commercial tea plantations, which are highly fertilized, showed higher fluxes (0.9 kg N2O-N ha(-1) a(-1) and 4.3 kg NO-N ha(-1) a(-1)) than smallholder tea plantations (0.1 kg N2O-N ha(-1) a(-1) and 2.1 kg NO-N ha(-1) a(-1)) or grazing land (0.1 kg N2O-N ha(-1) a(-1) and 1.1 kg NO-N ha(-1) a(-1)). High soil NO fluxes were probably the consequence of long-term N fertilization and associated soil acidification, likely promoting chemodenitrification. Our experimental approach can be implemented in understudied regions, with the potential to increase the amount of information on production and consumption of trace gases from soils
An efficient Foxtail mosaic virus vector system with reduced environmental risk
<p>Abstract</p> <p>Background</p> <p>Plant viral vectors offer high-yield expression of pharmaceutical and commercially important proteins with a minimum of cost and preparation time. The use of <it>Agrobacterium tumefaciens </it>has been introduced to deliver the viral vector as a transgene to each plant cell via a simple, nonsterile infiltration technique called "agroinoculation". With agroinoculation, a full length, systemically moving virus is no longer necessary for excellent protein yield, since the viral transgene is transcribed and replicates in every infiltrated cell. Viral genes may therefore be deleted to decrease the potential for accidental spread and persistence of the viral vector in the environment.</p> <p>Results</p> <p>In this study, both the coat protein (CP) and triple gene block (TGB) genetic segments were eliminated from <it>Foxtail mosaic virus </it>to create the "FECT" vector series, comprising a deletion of 29% of the genome. This viral vector is highly crippled and expresses little or no marker gene within the inoculated leaf. However, when co-agroinoculated with a silencing suppressor (p19 or HcPro), FECT expressed GFP at 40% total soluble protein in the tobacco host, <it>Nicotiana benthamiana</it>. The modified FoMV vector retained the full-length replicase ORF, the TGB1 subgenomic RNA leader sequence and either 0, 22 or 40 bases of TGB1 ORF (in vectors FECT0, FECT22 and FECT40, respectively). As well as <it>N. benthamiana</it>, infection of legumes was demonstrated. Despite many attempts, expression of GFP via syringe agroinoculation of various grass species was very low, reflecting the low <it>Agrobacterium</it>-mediated transformation rate of monocots.</p> <p>Conclusions</p> <p>The FECT/40 vector expresses foreign genes at a very high level, and yet has a greatly reduced biohazard potential. It can form no virions and can effectively replicate only in a plant with suppressed silencing.</p
- âŚ