579 research outputs found
Population of isomers in decay of the giant dipole resonance
The value of an isomeric ratio (IR) in N=81 isotones (Ba, Ce,
Nd and Sm) is studied by means of the ( reaction.
This quantity measures a probability to populate the isomeric state in respect
to the ground state population. In ( reactions, the giant dipole
resonance (GDR) is excited and after its decay by a neutron emission, the
nucleus has an excitation energy of a few MeV. The forthcoming decay
by direct or cascade transitions deexcites the nucleus into an isomeric or
ground state. It has been observed experimentally that the IR for Ba
and Ce equals about 0.13 while in two heavier isotones it is even less
than half the size. To explain this effect, the structure of the excited states
in the energy region up to 6.5 MeV has been calculated within the Quasiparticle
Phonon Model. Many states are found connected to the ground and isomeric states
by , and transitions. The single-particle component of the wave
function is responsible for the large values of the transitions. The calculated
value of the isomeric ratio is in very good agreement with the experimental
data for all isotones. A slightly different value of maximum energy with which
the nuclei rest after neutron decay of the GDR is responsible for the reported
effect of the A-dependence of the IR.Comment: 16 pages, 4 Fig
Nonlinear electron transport in normally pinched-off quantum wire
Nonlinear electron transport in normally pinched-off quantum wires was
studied. The wires were fabricated from AlGaAs/GaAs heterostructures with
high-mobility two-dimensional electron gas by electron beam lithography and
following wet etching. At certain critical source-drain voltage the samples
exhibited a step rise of the conductance. The differential conductance of the
open wires was noticeably lower than e^2/h as far as only part of the
source-drain voltage dropped between source contact and saddle-point of the
potential relief along the wire. The latter limited the electron flow injected
to the wire. At high enough source-drain voltages the decrease of the
differential conductance due to the real space transfer of electrons from the
wire in GaAs to the doped AlGaAs layer was found. In this regime the sign of
differential magnetoconductance was changed with reversing the direction of the
current in the wire or the magnetic field, whet the magnetic field lies in the
heterostructure plane and is directed perpendicular to the current. The
dependence of the differential conductance on the magnetic field and its
direction indicated that the real space transfer events were mainly mediated by
the interface scattering.Comment: LaTeX 2e (epl.cls) 6 pages, 3 figure
Customized CMOS wavefront sensor
We report on an integrated Hartmann wavefront sensor (WFS) using passive-pixel architecture and pixels clustered as position-sensitive detectors for dynamic wavefront analysis. This approach substitutes a conventional imager, such as a CCD or CMOS imager, by a customized detector, thus improving the overall speed performance. CMOS (complementary-metal- oxide-semiconductor) technology enables on-chip integration of several analog and digital circuitry. The sensor performance depends on the feature size of the technology, noise levels, photosensitive elements employed, architecture chosen and reconstruction algorithm.(undefined
Partial level density of the n-quasiparticle excitations in the nuclei of the 39< A <201 region
Level density and radiative strength functions are obtained from the analysis
of two-step cascades intensities following the thermal neutrons capture. The
data on level density are approximated by the sum of the partial level
densities corresponding to n quasiparticles excitation. The most probable
values of the collective enhancement factor of the level density are found
together with the thresholds of the next Cooper nucleons pair breaking. These
data allow one to calculate the level density of practically any nucleus in
given spin window in the framework of model concepts, taking into account all
known nuclear excitation types. The presence of an approximation results
discrepancy with theoretical statements specifies the necessity of rather
essentially developing the level density models. It also indicates the
possibilities to obtain the essentially new information on nucleon correlation
functions of the excited nucleus from the experiment.Comment: 29 pages, 8 figures, 2 table
Minority and mode conversion heating in (3He)-H JET plasma
Radio frequency (RF) heating experiments have recently been conducted in JET (He-3)-H plasmas. This type of plasmas will be used in ITER's non-activated operation phase. Whereas a companion paper in this same PPCF issue will discuss the RF heating scenario's at half the nominal magnetic field, this paper documents the heating performance in (He-3)-H plasmas at full field, with fundamental cyclotron heating of He-3 as the only possible ion heating scheme in view of the foreseen ITER antenna frequency bandwidth. Dominant electron heating with global heating efficiencies between 30% and 70% depending on the He-3 concentration were observed and mode conversion (MC) heating proved to be as efficient as He-3 minority heating. The unwanted presence of both He-4 and D in the discharges gave rise to 2 MC layers rather than a single one. This together with the fact that the location of the high-field side fast wave (FW) cutoff is a sensitive function of the parallel wave number and that one of the locations of the wave confluences critically depends on the He-3 concentration made the interpretation of the results, although more complex, very interesting: three regimes could be distinguished as a function of X[He-3]: (i) a regime at low concentration (X[He-3] < 1.8%) at which ion cyclotron resonance frequency (ICRF) heating is efficient, (ii) a regime at intermediate concentrations (1.8 < X[He-3] < 5%) in which the RF performance is degrading and ultimately becoming very poor, and finally (iii) a good heating regime at He-3 concentrations beyond 6%. In this latter regime, the heating efficiency did not critically depend on the actual concentration while at lower concentrations (X[He-3] < 4%) a bigger excursion in heating efficiency is observed and the estimates differ somewhat from shot to shot, also depending on whether local or global signals are chosen for the analysis. The different dynamics at the various concentrations can be traced back to the presence of 2 MC layers and their associated FW cutoffs residing inside the plasma at low He-3 concentration. One of these layers is approaching and crossing the low-field side plasma edge when 1.8 < X[He-3] < 5%. Adopting a minimization procedure to correlate the MC positions with the plasma composition reveals that the different behaviors observed are due to contamination of the plasma. Wave modeling not only supports this interpretation but also shows that moderate concentrations of D-like species significantly alter the overall wave behavior in He-3-H plasmas. Whereas numerical modeling yields quantitative information on the heating efficiency, analytical work gives a good description of the dominant underlying wave interaction physics
Thermal Bogoliubov transformation in nuclear structure theory
Thermal Bogoliubov transformation is an essential ingredient of the thermo
field dynamics -- the real time formalism in quantum field and many-body
theories at finite temperatures developed by H. Umezawa and coworkers. The
approach to study properties of hot nuclei which is based on the extension of
the well-known Quasiparticle-Phonon Model to finite temperatures employing the
TFD formalism is presented. A distinctive feature of the QPM-TFD combination is
a possibility to go beyond the standard approximations like the thermal
Hartree-Fock or the thermal RPA ones.Comment: 8 pages, Proceedings of the International Bogolyubov Conference
"Problems of Theoretical and Mathematical Physics", August 23 -- 27, 2009,
Dubna, Russi
- …
