Nonlinear electron transport in normally pinched-off quantum wires was
studied. The wires were fabricated from AlGaAs/GaAs heterostructures with
high-mobility two-dimensional electron gas by electron beam lithography and
following wet etching. At certain critical source-drain voltage the samples
exhibited a step rise of the conductance. The differential conductance of the
open wires was noticeably lower than e^2/h as far as only part of the
source-drain voltage dropped between source contact and saddle-point of the
potential relief along the wire. The latter limited the electron flow injected
to the wire. At high enough source-drain voltages the decrease of the
differential conductance due to the real space transfer of electrons from the
wire in GaAs to the doped AlGaAs layer was found. In this regime the sign of
differential magnetoconductance was changed with reversing the direction of the
current in the wire or the magnetic field, whet the magnetic field lies in the
heterostructure plane and is directed perpendicular to the current. The
dependence of the differential conductance on the magnetic field and its
direction indicated that the real space transfer events were mainly mediated by
the interface scattering.Comment: LaTeX 2e (epl.cls) 6 pages, 3 figure