4,163 research outputs found

    Dissipation in Poynting-flux Dominated Flows: the Sigma-Problem of the Crab Pulsar Wind

    Full text link
    Flows in which energy is transported predominantly as Poynting flux are thought to occur in pulsars, gamma-ray bursts and relativistic jets from compact objects. The fluctuating component of the magnetic field in such a flow can in principle be dissipated by magnetic reconnection, and used to accelerate the flow. We investigate how rapidly this transition can take place, by implementing into a global MHD model, that uses a thermodynamic description of the plasma, explicit, physically motivated prescriptions for the dissipation rate: a lower limit on this rate is given by limiting the maximum drift speed of the current carriers to that of light, an upper limit follows from demanding that the dissipation zone expand only subsonically in the comoving frame and a further prescription is obtained by assuming that the expansion speed is limited by the growth rate of the relativistic tearing mode. In each case, solutions are presented which give the Lorentz factor of a spherical wind containing a transverse, oscillating magnetic field component as a function of radius. In the case of the Crab pulsar, we find that the Poynting flux can be dissipated before the wind reaches the inner edge of the Nebula if the pulsar emits electron positron pairs at a rate >1.E40 per second, thus providing a possible solution to the sigma-problem.Comment: Accepted for publication in Ap

    Magnetorotational collapse of very massive stars to black holes in full general relativity

    Full text link
    We perform axisymmetric simulations of the magnetorotational collapse of very massive stars in full general relativity. Our simulations are applicable to the collapse of supermassive stars (M > 10^3M_sun) and to very massive Pop III stars. We model our initial configurations by n=3 polytropes. The ratio of magnetic to rotational kinetic energy in these configurations is chosen to be small (1% and 10%). We find that such magnetic fields do not affect the initial collapse significantly. The core collapses to a black hole, after which black hole excision is employed to continue the evolution long enough for the hole to reach a quasi-stationary state. We find that the black hole mass is M_h = 0.95M and its spin parameter is J_h/M_h^2 = 0.7, with the remaining matter forming a torus around the black hole. We freeze the spacetime metric ("Cowling approximation") and continue to follow the evolution of the torus after the black hole has relaxed to quasi-stationary equilibrium. In the absence of magnetic fields, the torus settles down following ejection of a small amount of matter due to shock heating. When magnetic fields are present, the field lines gradually collimate along the hole's rotation axis. MHD shocks and the MRI generate MHD turbulence in the torus and stochastic accretion onto the central black hole. When the magnetic field is strong, a wind is generated in the torus, and the torus undergoes radial oscillations that drive episodic accretion onto the hole. These oscillations produce long-wavelength gravitational waves potentially detectable by LISA. The final state of the magnetorotational collapse always consists of a central black hole surrounded by a collimated magnetic field and a hot, thick accretion torus. This system is a viable candidate for the central engine of a long-soft gamma-ray burst.Comment: 17 pages, 13 figures, replaced with the published versio

    Asymmetric Supernovae, Pulsars, Magnetars, and Gamma-Ray Bursts

    Get PDF
    We outline the possible physical processes, associated timescales, and energetics that could lead to the production of pulsars, jets, asymmetric supernovae, and weak gamma-ray bursts in routine circumstances and to a magnetar and perhaps stronger gamma-ray burst in more extreme circumstances in the collapse of the bare core of a massive star. The production of a LeBlanc-Wilson MHD jet could provide an asymmetric supernova and result in a weak gamma-ray burst when the jet accelerates down the stellar density gradient of a hydrogen-poor photosphere. The matter-dominated jet would be formed promptly, but requires 5 to 10 s to reach the surface of the progenitor of a Type Ib/c supernova. During this time, the newly-born neutron star could contract, spin up, and wind up field lines or turn on an alpha-Omega dynamo. In addition, the light cylinder will contract from a radius large compared to the Alfven radius to a size comparable to that of the neutron star. This will disrupt the structure of any organized dipole field and promote the generation of ultrarelativistic MHD waves (UMHDW) at high density and Large Amplitude Electromagnetic Waves (LAEMW) at low density. The generation of the these waves would be delayed by the cooling time of the neutron star about 5 to 10 seconds, but the propagation time is short so the UMHDW could arrive at the surface at about the same time as the matter jet. In the density gradient of the star and the matter jet, the intense flux of UMHDW and LAEMW could drive shocks, generate pions by proton-proton collision, or create electron/positron pairs depending on the circumstances. The UMHDW and LAEMW could influence the dynamics of the explosion and might also tend to flow out the rotation axis to produce a collimated gamma-ray burst.Comment: 31 pages, LaTeX, revised for referee comments, accepted for ApJ, July 10 issu

    The Accretion of Lyman Alplha Clouds onto Gas-Rech Protogalaxies; A Scenario for the Formation of Globular Star Clusters

    Full text link
    A satisfactory theory for the formation of globular star clusters (GCs) has long been elusive, perhaps because their true progenitors had not yet been guessed. In this paper I propose a causal relationship between the strongly decreasing densities of Lyman alpha (LyA) clouds at high redshift and the formation of GCs - namely that GCs were created by the accretion of LyA clouds onto protogalaxies. I describe a scenario which involves an inherently stable and orderly cycling of compression and cooling in the central cores of clouds during the extended period of dissipation in the outer regins of gas-rich proto galaxies, culminating in a burst of efficient star formation. I demonstrate that the comoving density of GCs is comparable to that of LyA clouds at high redshift, that the energetic requirements for compression to core GC densities can be met, and that the time-scale for cooling is within obvious limits imposed by dynamical stability. This dissipative process requires there to be a large column of dissipated gas about the attractor in order to form GCs. In addition, the energy requirements for compression requires attractor masses greater than that capable of sustaining circular velocities of ~40 km/s. If this scenario is supported by numerical simulations, then by implication, the GCs were formed at modest redshifts of z~1-3. This knowledge could help to break the degeneracy between lookback time and redshift. The model is consistent with a picture of hierarchical galaxy growth over time scales of many billions of years.Comment: 7 pages. Accepted, 10 June 1999 Astrophysical Journa

    The Crab Nebula: interpretation of CHANDRA observations

    Full text link
    We interpret the observed X-ray morphology of the central part of the Crab Nebula (torus + jets) in terms of the standard theory by Kennel and Coroniti (1984). The only new element is the inclusion of anisotropy in the energy flux from the pulsar in the theory. In the standard theory of relativistic winds, the Lorentz factor of the particles in front of the shock that terminates the pulsar relativistic wind depends on the polar angle as γ=γ0+γmsin2θ\gamma=\gamma_0+\gamma_m\sin^2\theta, where γ0200\gamma_0 \sim 200 and γm4.5×106\gamma_m \sim 4.5\times 10^6. The plasma flow in the wind is isotropic. After the passage of the pulsar wind through the shock, the flow becomes subsonic with a roughly constant (over the plerion volume) pressure P=13nϵP={1\over 3}n\epsilon, where nn is the plasma particle density and ϵ\epsilon is the mean particle energy. Since ϵγmc2\epsilon \sim \gamma mc^2, a low-density region filled with the most energetic electrons is formed near the equator. A bright torus of synchrotron radiation develops here. Jet-like regions are formed along the pulsar rotation axis, where the particle density is almost four orders of magnitude higher than that in the equatorial plane, because the particle energy there is four orders of magnitude lower. The energy of these particles is too low to produce detectable synchrotron radiation. However, these quasi-jets become comparable in brightness to the torus if additional particle acceleration takes place in the plerion. We also present the results of our study of the hydrodynamic interaction between an anisotropic wind and the interstellar medium. We compare the calculated and observed distributions of the volume intensity of X-ray radiation.Comment: 38 pages, 5 figures. To be published in Astronomy Letters, 2002, N 6, p.

    Dynamical effects of the neutrino gravitational clustering at Planck angular scales

    Full text link
    We study the CMB anisotropy induced by the non-linear perturbations in the massive neutrino density associated to the non-linear gravitational clustering proceses. Our results show that for the neutrino fraction in agreement with that indicated by the astroparticle and nuclear physics experiments and a cosmological accreting mass comparable with the mass of known clusters, the angular resolution and the sensitivity of the CMB anisotropy measurements from the Planck surveyor will allow the detection of the dynamical effects of the neutrino gravitational clustering.Comment: 40 pages and 12 figures, submitted to ApJ (14 March 2002

    Intense Electromagnetic Outbursts from Collapsing Hypermassive Neutron Stars

    Full text link
    We study the gravitational collapse of a magnetized neutron star using a novel numerical approach able to capture both the dynamics of the star and the behavior of the surrounding plasma. In this approach, a fully general relativistic magnetohydrodynamics implementation models the collapse of the star and provides appropriate boundary conditions to a force-free model which describes the stellar exterior. We validate this strategy by comparing with known results for the rotating monopole and aligned rotator solutions and then apply it to study both rotating and non-rotating stellar collapse scenarios, and contrast the behavior with what is obtained when employing the electrovacuum approximation outside the star. The non-rotating electrovacuum collapse is shown to agree qualitatively with a Newtonian model of the electromagnetic field outside a collapsing star. We illustrate and discuss a fundamental difference between the force-free and electrovacuum solutions, involving the appearance of large zones of electric-dominated field in the vacuum case. This provides a clear demonstration of how dissipative singularities appear generically in the non-linear time-evolution of force-free fluids. In both the rotating and non-rotating cases, our simulations indicate that the collapse induces a strong electromagnetic transient. In the case of sub-millisecond rotation, the magnetic field experiences strong winding and the transient carries much more energy. This result has important implications for models of gamma-ray bursts.Comment: 28 pages, 20 figures (quality lowered to reduce sizes). Improved initial data and matching condition results in a lower, but still important, energy emission. Added appendix with a discussion on effects of transition laye

    Gedanken Worlds without Higgs: QCD-Induced Electroweak Symmetry Breaking

    Full text link
    To illuminate how electroweak symmetry breaking shapes the physical world, we investigate toy models in which no Higgs fields or other constructs are introduced to induce spontaneous symmetry breaking. Two models incorporate the standard SU(3)_c x SU(2)_L x U(1)_Y gauge symmetry and fermion content similar to that of the standard model. The first class--like the standard electroweak theory--contains no bare mass terms, so the spontaneous breaking of chiral symmetry within quantum chromodynamics is the only source of electroweak symmetry breaking. The second class adds bare fermion masses sufficiently small that QCD remains the dominant source of electroweak symmetry breaking and the model can serve as a well-behaved low-energy effective field theory to energies somewhat above the hadronic scale. A third class of models is based on the left-right--symmetric SU(3)_c x SU(2)_L x SU(2)_R x U(1)_{B-L} gauge group. In a fourth class of models, built on SU(4)_{PS} x SU(2)_L x SU(2)_R gauge symmetry, lepton number is treated as a fourth color. Many interesting characteristics of the models stem from the fact that the effective strength of the weak interactions is much closer to that of the residual strong interactions than in the real world. The Higgs-free models not only provide informative contrasts to the real world, but also lead us to consider intriguing issues in the application of field theory to the real world.Comment: 20 pages, no figures, uses RevTeX; typos correcte
    corecore