638 research outputs found

    Reliability and information content of tests with cardioleader in cyclic types of sports

    Get PDF
    Tests with cardioleader to control the physical, technical and tactical preparedness of athletes in cyclic types of sports are discussed. Ways of increasing the reliability and information content of the tests were studied

    Piecewise smooth systems near a co-dimension 2 discontinuity manifold: can one say what should happen?

    Full text link
    We consider a piecewise smooth system in the neighborhood of a co-dimension 2 discontinuity manifold Ξ£\Sigma. Within the class of Filippov solutions, if Ξ£\Sigma is attractive, one should expect solution trajectories to slide on Ξ£\Sigma. It is well known, however, that the classical Filippov convexification methodology is ambiguous on Ξ£\Sigma. The situation is further complicated by the possibility that, regardless of how sliding on Ξ£\Sigma is taking place, during sliding motion a trajectory encounters so-called generic first order exit points, where Ξ£\Sigma ceases to be attractive. In this work, we attempt to understand what behavior one should expect of a solution trajectory near Ξ£\Sigma when Ξ£\Sigma is attractive, what to expect when Ξ£\Sigma ceases to be attractive (at least, at generic exit points), and finally we also contrast and compare the behavior of some regularizations proposed in the literature. Through analysis and experiments we will confirm some known facts, and provide some important insight: (i) when Ξ£\Sigma is attractive, a solution trajectory indeed does remain near Ξ£\Sigma, viz. sliding on Ξ£\Sigma is an appropriate idealization (of course, in general, one cannot predict which sliding vector field should be selected); (ii) when Ξ£\Sigma loses attractivity (at first order exit conditions), a typical solution trajectory leaves a neighborhood of Ξ£\Sigma; (iii) there is no obvious way to regularize the system so that the regularized trajectory will remain near Ξ£\Sigma as long as Ξ£\Sigma is attractive, and so that it will be leaving (a neighborhood of) Ξ£\Sigma when Ξ£\Sigma looses attractivity. We reach the above conclusions by considering exclusively the given piecewise smooth system, without superimposing any assumption on what kind of dynamics near Ξ£\Sigma (or sliding motion on Ξ£\Sigma) should have been taking place.Comment: 19 figure

    Sliding mode control of quantum systems

    Full text link
    This paper proposes a new robust control method for quantum systems with uncertainties involving sliding mode control (SMC). Sliding mode control is a widely used approach in classical control theory and industrial applications. We show that SMC is also a useful method for robust control of quantum systems. In this paper, we define two specific classes of sliding modes (i.e., eigenstates and state subspaces) and propose two novel methods combining unitary control and periodic projective measurements for the design of quantum sliding mode control systems. Two examples including a two-level system and a three-level system are presented to demonstrate the proposed SMC method. One of main features of the proposed method is that the designed control laws can guarantee desired control performance in the presence of uncertainties in the system Hamiltonian. This sliding mode control approach provides a useful control theoretic tool for robust quantum information processing with uncertainties.Comment: 18 pages, 4 figure

    CONSTRUCTION OF A DNA-MICROARRAY FOR DIFFERENTIATION BETWEEN THE MAIN AND NON-MAIN SUBSPECIES AND BIOVARS OF THE MAIN SUBSPECIES OF YERSINIA PESTIS

    Get PDF
    Objective of the study is to design the DNA-microarray for differentiation of Y. pestis strains of the main and non-main subspecies and biovars of the main subspecies. Materials and methods. Efficiency analysis for the devised means was conducted using 62 Y. pestis strains of various subspecies and biovars, isolated in the natural foci of Russia and neighboring countries. Results and conclusions. Selected have been the DNA-targets, probes and primers – calculated. Enhanced is the method of sub-specific and biovar differentiation of Y. pestis strains by means of DNA-microarray. DNA-chip with β€œMed24”, β€œglpD(-93)”, and β€œ45” targets allows for prompt differentiation of the strains of the main and non-main subspecies and biovars of the main subspecies based on the presence and absence of fluorescent signal by the specific for the main subspecies and its biovars DNA-targets

    Π­ΠΠ•Π Π“ΠžΠ‘Π˜Π›ΠžΠ’Π«Π• Π£Π‘Π›ΠžΠ’Π˜Π― Π“Π˜Π”Π ΠžΠœΠ•Π₯ΠΠΠ˜Π§Π•Π‘ΠšΠžΠ“Πž ΠŸΠ Π•Π‘Π‘ΠžΠ’ΠΠΠ˜Π― ΠšΠ Π£Π“Π›Π«Π₯ Π˜Π—Π”Π•Π›Π˜Π™

    Get PDF
    One of the main widespread methods of metal forming is pressing characterized by a favorable plastic deformation pattern with the predominant effect of all-round compressive stresses. This allows deforming low-ductile materials and alloys with sufficiently high degrees of deformation. This paper studies plastic deformation conditions at hydro-mechanical pressing as one of pressing types. A distinctive feature of hydro-mechanical pressing as compared to other pressing types is the ability to control the movement of the billet and prevent its ejection at the final process stage. The study covers the conditions of hydro-mechanical pressing which combines the use of high-pressure working fluid and the mechanical impact of the tooling on the pressing die. Formulas for the components of the total hydro-mechanical pressing stress are derived to serve the basis for determination of the optimal process tool geometry. Taper angles of the hydro-mechanical pressing die are optimized depending on the main pressing process parameters. The dependency graphs are plotted for the ratio of pressing stress to the resistance of pressed material deformation as a result of drawing that confirmed the presence of optimum taper angles of pressing dies.Одним ΠΈΠ· основных ΡˆΠΈΡ€ΠΎΠΊΠΎ распространСнных способов ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ являСтся прСссованиС, для ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Π° благоприятная схСма пластичСской Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ с ΠΏΡ€Π΅ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠΌ дСйствиСм напряТСний всСстороннСго сТатия, Ρ‡Ρ‚ΠΎ позволяСт Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ малопластичныС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ сплавы с достаточно большими стСпСнями дСформирования. Π’ настоящСй Ρ€Π°Π±ΠΎΡ‚Π΅ рассмотрСны условия пластичСского дСформирования ΠΏΡ€ΠΈ гидромСханичСском прСссовании, ΠΊΠ°ΠΊ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· разновидностСй процСсса прСссования. Π•Π³ΠΎ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ Π²ΠΈΠ΄Π°ΠΌΠΈ прСссования являСтся Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΈ ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π°Ρ‚ΡŒ Π΅Π΅ «выстрСливаниС» Π² ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ стадии процСсса. Π’ Ρ…ΠΎΠ΄Π΅ исслСдований ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· условий гидромСханичСского прСссования, ΡΠΎΡ‡Π΅Ρ‚Π°ΡŽΡ‰Π΅Π³ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ Тидкости высокого давлСния ΠΈ мСханичСскоС воздСйствиС тСхнологичСской оснастки Π½Π° ΠΏΡ€Π΅ΡΡΡƒΡŽΡ‰ΡƒΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… ΠΎΠ±Ρ‰Π΅Π³ΠΎ напряТСния гидромСханичСского прСссования, Π½Π° основании ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Π°Ρ гСомСтрия тСхнологичСского инструмСнта. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° оптимизация ΡƒΠ³Π»ΠΎΠ² конусности ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ для гидромСханичСского прСссования Π² зависимости ΠΎΡ‚ основных тСхнологичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² процСсса прСссования. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½Ρ‹ зависимости ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ напряТСния прСссования ΠΊ ΡΠΎΠΏΡ€ΠΎΡ‚ΠΈΠ²Π»Π΅Π½ΠΈΡŽ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ прСссуСмого ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΎΡ‚ вытяТки, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΠ»ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ² конусности прСссовых ΠΌΠ°Ρ‚Ρ€ΠΈΡ†

    Effects of Glyphosate-Based Herbicide on Primary Production and Physiological Fitness of the Macroalgae Ulva lactuca

    Get PDF
    The use of glyphosate-based herbicides (GBHs) worldwide has increased exponentially over the last two decades increasing the environmental risk to marine and coastal habitats. The present study investigated the effects of GBHs at environmentally relevant concentrations (0, 10, 50, 100, 250, and 500 Β΅gΒ·L βˆ’1 ) on the physiology and biochemistry (photosynthesis, pigment, and lipid composition, antioxidative systems and energy balance) of Ulva lactuca, a cosmopolitan marine macroalgae species. Although GBHs cause deleterious effects such as the inhibition of photosynthetic activity, particularly at 250 Β΅gΒ·L βˆ’1 , due to the impairment of the electron transport in the chloroplasts, these changes are almost completely reverted at the highest concentration (500 Β΅gΒ·L βˆ’1 ). This could be related to the induction of tolerance mechanisms at a certain threshold or tipping point. While no changes occurred in the energy balance, an increase in the pigment antheraxanthin is observed jointly with an increase in ascorbate peroxidase activity. These mechanisms might have contributed to protecting thylakoids against excess radiation and the increase in reactive oxygen species, associated with stress conditions, as no increase in lipid peroxidation products was observed. Furthermore, changes in the fatty acids profile, usually attributed to the induction of plant stress response mechanisms, demonstrated the high resilience of this macroalgae. Notably, the application of bio-optical tools in ecotoxicology, such as pulse amplitude modulated (PAM) fluorometry and laser-induced fluorescence (LIF), allowed separation of the control samples and those treated by GBHs in different concentrations with a high degree of accuracy, with PAM more accurate in identifying the different treatments.info:eu-repo/semantics/publishedVersio

    Π˜ΡΠΊΡƒΡΡΡ‚Π²Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ Π² ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅: соврСмСнноС состояниС ΠΈ основныС направлСния развития ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ диагностики

    Get PDF
    The main difference between artificial intelligence (AI) systems and simple automated algorithms is the ability to learn, synthesize and conclude. The AI system is trained on a set of examples, including pictures, characteristics of patients with a certain disease, then it allows to generalize a lot of such examples and get some general functional dependence, which brings in line the patient data and a certain diagnosis. The system can be named intelligent if this synthetizing ability is realized. Although the AI systems are now becoming more understood and accepted by doctors, a deeper understanding of Β«how itΒ worksΒ» is needed. The article provides a detailed review of the application of methods and models of artificial intelligence in the diagnostics of cancer based on the of multimodal instrumental data. The basic concepts of artificial intelligence and directions of its development are presented. From the point of view of data processing, the stages of development of AI systems are identical. The stages of intellectual processing of diagnostic data are considered in the paper. They include the acquisition and use of training databases of oncological diseases, pre-processing of images, segmentation to highlight the studied objects of diagnosis and classification of these objects to determine whether they are malignant or benign. One of the problems limiting the acceptance of AI systems development by the medical community is the imperfection of the explainability of the results obtained by intelligent systems. Authors pay attention to importance of the development of so-called explanatory intelligence, because its absence currently significantly inhibits the introduction and use of intelligent diagnostic systems in medicine. In addition, the purpose of the article is a way to develop the interaction between a radiologists and data scientists.Π“Π»Π°Π²Π½ΠΎΠ΅ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ систСм искусствСнного ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚Π° (ИИ) ΠΎΡ‚ простых Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² способности ΠΊ ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΡŽ, ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΡŽ ΠΈ Π²Ρ‹Π²ΠΎΠ΄Ρƒ. БистСма ИИ обучаСтся Π½Π° мноТСствС ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ², Π²ΠΊΠ»ΡŽΡ‡Π°Ρ снимки, характСристики ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΌ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅ΠΌ, Π΄Π°Π»Π΅Π΅ ΠΎΠ½Π° позволяСт ΠΎΠ±ΠΎΠ±Ρ‰ΠΈΡ‚ΡŒ мноТСство Ρ‚Π°ΠΊΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΎΠ±Ρ‰ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ, которая ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ Π² соотвСтствиС Π΄Π°Π½Π½Ρ‹Π΅ ΠΎ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π΅ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΠ·. Π˜Π½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ систСма становится ΠΏΡ€ΠΈ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ этой ΠΎΠ±ΠΎΠ±Ρ‰Π°ΡŽΡ‰Π΅ΠΉ способности. НСсмотря Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Π² настоящСС врСмя Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° ИИ становится Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ½ΠΈΠΌΠ°Π΅ΠΌΠΎΠΉ ΠΈ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΠΎΠΉ Π²Ρ€Π°Ρ‡Π°ΠΌΠΈ, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π±ΠΎΠ»Π΅Π΅ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ΅ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ Β«ΠΊΠ°ΠΊ это Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚Β». Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ приводится Π΄Π΅Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΎΠ±Π·ΠΎΡ€ примСнСния ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ искусствСнного ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚Π° Π² диагностикС онкологичСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Π½Π° основС Π΄Π°Π½Π½Ρ‹Ρ… ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΌΠΎΠ΄Π°Π»ΡŒΠ½ΠΎΠΉ Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ диагностики. Π”Π°Π½Ρ‹ основныС понятия искусствСнного ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚Π° ΠΈ направлСния Π΅Π³ΠΎ использования. Π‘ Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… этапы Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ систСм ИИ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ‡Π½Ρ‹. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассмотрСны этапы ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ диагностичСских Π΄Π°Π½Π½Ρ‹Ρ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ созданиС ΠΈ использованиС ΠΎΠ±ΡƒΡ‡Π°ΡŽΡ‰ΠΈΡ… Π±Π°Π· Π΄Π°Π½Π½Ρ‹Ρ… онкологичСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ снимков, ΡΠ΅Π³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ для выдСлСния исслСдуСмых ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² диагностики ΠΈ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ этих ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² для опрСдСлСния, ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π»ΠΈ ΠΎΠ½ΠΈ злокачСствСнными ΠΈΠ»ΠΈ доброкачСствСнными. Одной ΠΈΠ· ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… принятиС развития систСм ИИ мСдицинским сообщСством, являСтся Π½Π΅ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎ ΠΎΠ±ΡŠΡΡΠ½ΠΈΠΌΠΎΡΡ‚ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… систСм. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Π·Π°Ρ‚Ρ€ΠΎΠ½ΡƒΡ‚Ρ‹ Π²Π°ΠΆΠ½Ρ‹Π΅ вопросы Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΎΠ±ΡŠΡΡΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚Π°, отсутствиС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π² настоящСС врСмя сущСствСнно Ρ‚ΠΎΡ€ΠΌΠΎΠ·ΠΈΡ‚ Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΠ΅ ΠΈ использованиС ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… систСм диагностики Π² ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Ρ†Π΅Π»ΡŒ ΡΡ‚Π°Ρ‚ΡŒΠΈ β€” ΠΏΡƒΡ‚ΡŒ ΠΊ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ взаимодСйствия ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Ρ€Π°Ρ‡ΠΎΠΌ ΠΈ спСциалистом ΠΏΠΎ искусствСнному ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚Ρƒ

    Fluoxetine induces photochemistry-derived oxidative stress on Ulva lactuca

    Get PDF
    Emerging pollutants impose a high degree of stress on marine ecosystems, compromising valuable resources, the planet and human health. Pharmaceutical residues often reach marine ecosystems, and their input is directly related to human activities. Fluoxetine is an antidepressant, and one of the most prescribed selective serotonin reuptake inhibitors globally and has been detected in aquatic ecosystems in concentrations up to 40 ΞΌg Lβˆ’1 . The present study aims to evaluate the impact of fluoxetine ecotoxicity on the photochemistry, energy metabolism and enzyme activity of Ulva lactuca exposed to environmentally relevant concentrations (0.3, 0.6, 20, 40, and 80 ΞΌg Lβˆ’1 ). Exogenous fluoxetine exposure induced negative impacts on U. lactuca photochemistry, namely on photosystem II antennae grouping and energy fluxes. These impacts included increased oxidative stress and elevated enzymatic activity of ascorbate peroxidase and glutathione reductase. Lipid content increased and the altered levels of key fatty acids such as hexadecadienoic (C16:2) and linoleic (C18:2) acids revealed strong correlations with fluoxetine concentrations tested. Multivariate analyses reinforced the oxidative stress and chlorophyll a fluorescence-derived traits as efficient biomarkers for future toxicology studies.info:eu-repo/semantics/publishedVersio
    • …
    corecore