638 research outputs found
Reliability and information content of tests with cardioleader in cyclic types of sports
Tests with cardioleader to control the physical, technical and tactical preparedness of athletes in cyclic types of sports are discussed. Ways of increasing the reliability and information content of the tests were studied
Piecewise smooth systems near a co-dimension 2 discontinuity manifold: can one say what should happen?
We consider a piecewise smooth system in the neighborhood of a co-dimension 2
discontinuity manifold . Within the class of Filippov solutions, if
is attractive, one should expect solution trajectories to slide on
. It is well known, however, that the classical Filippov
convexification methodology is ambiguous on . The situation is further
complicated by the possibility that, regardless of how sliding on is
taking place, during sliding motion a trajectory encounters so-called generic
first order exit points, where ceases to be attractive.
In this work, we attempt to understand what behavior one should expect of a
solution trajectory near when is attractive, what to expect
when ceases to be attractive (at least, at generic exit points), and
finally we also contrast and compare the behavior of some regularizations
proposed in the literature.
Through analysis and experiments we will confirm some known facts, and
provide some important insight: (i) when is attractive, a solution
trajectory indeed does remain near , viz. sliding on is an
appropriate idealization (of course, in general, one cannot predict which
sliding vector field should be selected); (ii) when loses attractivity
(at first order exit conditions), a typical solution trajectory leaves a
neighborhood of ; (iii) there is no obvious way to regularize the
system so that the regularized trajectory will remain near as long as
is attractive, and so that it will be leaving (a neighborhood of)
when looses attractivity.
We reach the above conclusions by considering exclusively the given piecewise
smooth system, without superimposing any assumption on what kind of dynamics
near (or sliding motion on ) should have been taking place.Comment: 19 figure
Sliding mode control of quantum systems
This paper proposes a new robust control method for quantum systems with
uncertainties involving sliding mode control (SMC). Sliding mode control is a
widely used approach in classical control theory and industrial applications.
We show that SMC is also a useful method for robust control of quantum systems.
In this paper, we define two specific classes of sliding modes (i.e.,
eigenstates and state subspaces) and propose two novel methods combining
unitary control and periodic projective measurements for the design of quantum
sliding mode control systems. Two examples including a two-level system and a
three-level system are presented to demonstrate the proposed SMC method. One of
main features of the proposed method is that the designed control laws can
guarantee desired control performance in the presence of uncertainties in the
system Hamiltonian. This sliding mode control approach provides a useful
control theoretic tool for robust quantum information processing with
uncertainties.Comment: 18 pages, 4 figure
CONSTRUCTION OF A DNA-MICROARRAY FOR DIFFERENTIATION BETWEEN THE MAIN AND NON-MAIN SUBSPECIES AND BIOVARS OF THE MAIN SUBSPECIES OF YERSINIA PESTIS
Objective of the study is to design the DNA-microarray for differentiation of Y. pestis strains of the main and non-main subspecies and biovars of the main subspecies. Materials and methods. Efficiency analysis for the devised means was conducted using 62 Y. pestis strains of various subspecies and biovars, isolated in the natural foci of Russia and neighboring countries. Results and conclusions. Selected have been the DNA-targets, probes and primers β calculated. Enhanced is the method of sub-specific and biovar differentiation of Y. pestis strains by means of DNA-microarray. DNA-chip with βMed24β, βglpD(-93)β, and β45β targets allows for prompt differentiation of the strains of the main and non-main subspecies and biovars of the main subspecies based on the presence and absence of fluorescent signal by the specific for the main subspecies and its biovars DNA-targets
ΠΠΠΠ ΠΠΠ‘ΠΠΠΠΠ«Π Π£Π‘ΠΠΠΠΠ― ΠΠΠΠ ΠΠΠΠ₯ΠΠΠΠ§ΠΠ‘ΠΠΠΠ ΠΠ ΠΠ‘Π‘ΠΠΠΠΠΠ― ΠΠ Π£ΠΠΠ«Π₯ ΠΠΠΠΠΠΠ
One of the main widespread methods of metal forming is pressing characterized by a favorable plastic deformation pattern with the predominant effect of all-round compressive stresses. This allows deforming low-ductile materials and alloys with sufficiently high degrees of deformation. This paper studies plastic deformation conditions at hydro-mechanical pressing as one of pressing types. A distinctive feature of hydro-mechanical pressing as compared to other pressing types is the ability to control the movement of the billet and prevent its ejection at the final process stage. The study covers the conditions of hydro-mechanical pressing which combines the use of high-pressure working fluid and the mechanical impact of the tooling on the pressing die. Formulas for the components of the total hydro-mechanical pressing stress are derived to serve the basis for determination of the optimal process tool geometry. Taper angles of the hydro-mechanical pressing die are optimized depending on the main pressing process parameters. The dependency graphs are plotted for the ratio of pressing stress to the resistance of pressed material deformation as a result of drawing that confirmed the presence of optimum taper angles of pressing dies.ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΡΠΈΡΠΎΠΊΠΎ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΡ
ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠ΅ΡΡΠΎΠ²Π°Π½ΠΈΠ΅, Π΄Π»Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½Π° Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½Π°Ρ ΡΡ
Π΅ΠΌΠ° ΠΏΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΠΈ Ρ ΠΏΡΠ΅ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π²ΡΠ΅ΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΡΠΆΠ°ΡΠΈΡ, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π΄Π΅ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°ΡΡ ΠΌΠ°Π»ΠΎΠΏΠ»Π°ΡΡΠΈΡΠ½ΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΡΠΏΠ»Π°Π²Ρ Ρ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠΈΠΌΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΡΠΌΠΈ Π΄Π΅ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ. Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΡΡΠ»ΠΎΠ²ΠΈΡ ΠΏΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π΄Π΅ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΈ Π³ΠΈΠ΄ΡΠΎΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΏΡΠ΅ΡΡΠΎΠ²Π°Π½ΠΈΠΈ, ΠΊΠ°ΠΊ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΡΠ°Π·Π½ΠΎΠ²ΠΈΠ΄Π½ΠΎΡΡΠ΅ΠΉ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΏΡΠ΅ΡΡΠΎΠ²Π°Π½ΠΈΡ. ΠΠ³ΠΎ ΠΎΡΠ»ΠΈΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΡ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ Π²ΠΈΠ΄Π°ΠΌΠΈ ΠΏΡΠ΅ΡΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΠΎΠ²Π°ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π·Π°Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΈ ΠΏΡΠ΅Π΄ΠΎΡΠ²ΡΠ°ΡΠ°ΡΡ Π΅Π΅ Β«Π²ΡΡΡΡΠ΅Π»ΠΈΠ²Π°Π½ΠΈΠ΅Β» Π² ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ ΡΡΠ°Π΄ΠΈΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠ°. Π Ρ
ΠΎΠ΄Π΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΡΡΠ»ΠΎΠ²ΠΈΠΉ Π³ΠΈΠ΄ΡΠΎΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠ΅ΡΡΠΎΠ²Π°Π½ΠΈΡ, ΡΠΎΡΠ΅ΡΠ°ΡΡΠ΅Π³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ°Π±ΠΎΡΠ΅ΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ ΠΈ ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΡΠ½Π°ΡΡΠΊΠΈ Π½Π° ΠΏΡΠ΅ΡΡΡΡΡΡΡ ΠΌΠ°ΡΡΠΈΡΡ. ΠΠΎΠ»ΡΡΠ΅Π½Ρ ΡΠΎΡΠΌΡΠ»Ρ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ
ΠΎΠ±ΡΠ΅Π³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π³ΠΈΠ΄ΡΠΎΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠ΅ΡΡΠΎΠ²Π°Π½ΠΈΡ, Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΡΡ
ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΡ ΡΠ³Π»ΠΎΠ² ΠΊΠΎΠ½ΡΡΠ½ΠΎΡΡΠΈ ΠΌΠ°ΡΡΠΈΡΡ Π΄Π»Ρ Π³ΠΈΠ΄ΡΠΎΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠ΅ΡΡΠΎΠ²Π°Π½ΠΈΡ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΏΡΠ΅ΡΡΠΎΠ²Π°Π½ΠΈΡ. ΠΠΎΡΡΡΠΎΠ΅Π½Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΠΏΡΠ΅ΡΡΠΎΠ²Π°Π½ΠΈΡ ΠΊ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΏΡΠ΅ΡΡΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΎΡ Π²ΡΡΡΠΆΠΊΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠ΄ΠΈΠ»ΠΈ Π½Π°Π»ΠΈΡΠΈΠ΅ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΡΠ³Π»ΠΎΠ² ΠΊΠΎΠ½ΡΡΠ½ΠΎΡΡΠΈ ΠΏΡΠ΅ΡΡΠΎΠ²ΡΡ
ΠΌΠ°ΡΡΠΈΡ
Effects of Glyphosate-Based Herbicide on Primary Production and Physiological Fitness of the Macroalgae Ulva lactuca
The use of glyphosate-based herbicides (GBHs) worldwide has increased exponentially over
the last two decades increasing the environmental risk to marine and coastal habitats. The present
study investigated the effects of GBHs at environmentally relevant concentrations (0, 10, 50, 100, 250,
and 500 Β΅gΒ·L
β1
) on the physiology and biochemistry (photosynthesis, pigment, and lipid composition,
antioxidative systems and energy balance) of Ulva lactuca, a cosmopolitan marine macroalgae species.
Although GBHs cause deleterious effects such as the inhibition of photosynthetic activity, particularly
at 250 Β΅gΒ·L
β1
, due to the impairment of the electron transport in the chloroplasts, these changes are
almost completely reverted at the highest concentration (500 Β΅gΒ·L
β1
). This could be related to the
induction of tolerance mechanisms at a certain threshold or tipping point. While no changes occurred
in the energy balance, an increase in the pigment antheraxanthin is observed jointly with an increase
in ascorbate peroxidase activity. These mechanisms might have contributed to protecting thylakoids
against excess radiation and the increase in reactive oxygen species, associated with stress conditions,
as no increase in lipid peroxidation products was observed. Furthermore, changes in the fatty acids
profile, usually attributed to the induction of plant stress response mechanisms, demonstrated the
high resilience of this macroalgae. Notably, the application of bio-optical tools in ecotoxicology, such
as pulse amplitude modulated (PAM) fluorometry and laser-induced fluorescence (LIF), allowed
separation of the control samples and those treated by GBHs in different concentrations with a high
degree of accuracy, with PAM more accurate in identifying the different treatments.info:eu-repo/semantics/publishedVersio
ΠΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡ Π² ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Π΅: ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ
The main difference between artificial intelligence (AI) systems and simple automated algorithms is the ability to learn, synthesize and conclude. The AI system is trained on a set of examples, including pictures, characteristics of patients with a certain disease, then it allows to generalize a lot of such examples and get some general functional dependence, which brings in line the patient data and a certain diagnosis. The system can be named intelligent if this synthetizing ability is realized. Although the AI systems are now becoming more understood and accepted by doctors, a deeper understanding of Β«how itΒ worksΒ» is needed. The article provides a detailed review of the application of methods and models of artificial intelligence in the diagnostics of cancer based on the of multimodal instrumental data. The basic concepts of artificial intelligence and directions of its development are presented. From the point of view of data processing, the stages of development of AI systems are identical. The stages of intellectual processing of diagnostic data are considered in the paper. They include the acquisition and use of training databases of oncological diseases, pre-processing of images, segmentation to highlight the studied objects of diagnosis and classification of these objects to determine whether they are malignant or benign. One of the problems limiting the acceptance of AI systems development by the medical community is the imperfection of the explainability of the results obtained by intelligent systems. Authors pay attention to importance of the development of so-called explanatory intelligence, because its absence currently significantly inhibits the introduction and use of intelligent diagnostic systems in medicine. In addition, the purpose of the article is a way to develop the interaction between a radiologists and data scientists.ΠΠ»Π°Π²Π½ΠΎΠ΅ ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌ ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΠ° (ΠΠ) ΠΎΡ ΠΏΡΠΎΡΡΡΡ
Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΊ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ, ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΡ ΠΈ Π²ΡΠ²ΠΎΠ΄Ρ. Π‘ΠΈΡΡΠ΅ΠΌΠ° ΠΠ ΠΎΠ±ΡΡΠ°Π΅ΡΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ², Π²ΠΊΠ»ΡΡΠ°Ρ ΡΠ½ΠΈΠΌΠΊΠΈ, Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΌ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅ΠΌ, Π΄Π°Π»Π΅Π΅ ΠΎΠ½Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠ±ΠΎΠ±ΡΠΈΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠ°ΠΊΠΈΡ
ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² ΠΈ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΠΎΠ±ΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΎ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ΅ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΠ·. ΠΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ° ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ ΠΏΡΠΈ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΡΡΠΎΠΉ ΠΎΠ±ΠΎΠ±ΡΠ°ΡΡΠ΅ΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ. ΠΠ΅ΡΠΌΠΎΡΡΡ Π½Π° ΡΠΎ, ΡΡΠΎ Π² Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° ΠΠ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ½ΠΈΠΌΠ°Π΅ΠΌΠΎΠΉ ΠΈ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΠΎΠΉ Π²ΡΠ°ΡΠ°ΠΌΠΈ, Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ Π±ΠΎΠ»Π΅Π΅ Π³Π»ΡΠ±ΠΎΠΊΠΎΠ΅ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ Β«ΠΊΠ°ΠΊ ΡΡΠΎ ΡΠ°Π±ΠΎΡΠ°Π΅ΡΒ». Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡΡ Π΄Π΅ΡΠ°Π»ΡΠ½ΡΠΉ ΠΎΠ±Π·ΠΎΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΈ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΠ° Π² Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ΅ ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π΄Π°Π½Π½ΡΡ
ΠΌΡΠ»ΡΡΠΈΠΌΠΎΠ΄Π°Π»ΡΠ½ΠΎΠΉ Π»ΡΡΠ΅Π²ΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ. ΠΠ°Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΠ° ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ. Π‘ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π΄Π°Π½Π½ΡΡ
ΡΡΠ°ΠΏΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠΈΡΡΠ΅ΠΌ ΠΠ ΠΈΠ΄Π΅Π½ΡΠΈΡΠ½Ρ. Π ΡΡΠ°ΡΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΡΡΠ°ΠΏΡ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π΄Π°Π½Π½ΡΡ
, ΠΊΠΎΡΠΎΡΡΠ΅ Π²ΠΊΠ»ΡΡΠ°ΡΡ ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠ±ΡΡΠ°ΡΡΠΈΡ
Π±Π°Π· Π΄Π°Π½Π½ΡΡ
ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΡ ΡΠ½ΠΈΠΌΠΊΠΎΠ², ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΡ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π΄Π»Ρ Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΠΈ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΡΡΠΈΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ, ΡΠ²Π»ΡΡΡΡΡ Π»ΠΈ ΠΎΠ½ΠΈ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ ΠΈΠ»ΠΈ Π΄ΠΎΠ±ΡΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ. ΠΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΏΡΠΎΠ±Π»Π΅ΠΌ, ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΠ²Π°ΡΡΠΈΡ
ΠΏΡΠΈΠ½ΡΡΠΈΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠΈΡΡΠ΅ΠΌ ΠΠ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΈΠΌ ΡΠΎΠΎΠ±ΡΠ΅ΡΡΠ²ΠΎΠΌ, ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎ ΠΎΠ±ΡΡΡΠ½ΠΈΠΌΠΎΡΡΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ², ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌΡΡ
ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ. Π ΡΡΠ°ΡΡΠ΅ Π·Π°ΡΡΠΎΠ½ΡΡΡ Π²Π°ΠΆΠ½ΡΠ΅ Π²ΠΎΠΏΡΠΎΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΎΠ±ΡΡΡΠ½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΠ°, ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π² Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠΎΡΠΌΠΎΠ·ΠΈΡ Π²Π½Π΅Π΄ΡΠ΅Π½ΠΈΠ΅ ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ Π² ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Π΅. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΡΠ΅Π»Ρ ΡΡΠ°ΡΡΠΈ β ΠΏΡΡΡ ΠΊ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ Π²ΡΠ°ΡΠΎΠΌ ΠΈ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡΠΎΠΌ ΠΏΠΎ ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΌΡ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡ
Fluoxetine induces photochemistry-derived oxidative stress on Ulva lactuca
Emerging pollutants impose a high degree of stress on marine ecosystems,
compromising valuable resources, the planet and human health. Pharmaceutical
residues often reach marine ecosystems, and their input is directly related to human
activities. Fluoxetine is an antidepressant, and one of the most prescribed selective
serotonin reuptake inhibitors globally and has been detected in aquatic ecosystems
in concentrations up to 40 ΞΌg Lβ1
. The present study aims to evaluate the impact of
fluoxetine ecotoxicity on the photochemistry, energy metabolism and enzyme
activity of Ulva lactuca exposed to environmentally relevant concentrations (0.3, 0.6,
20, 40, and 80 ΞΌg Lβ1
). Exogenous fluoxetine exposure induced negative impacts on
U. lactuca photochemistry, namely on photosystem II antennae grouping and
energy fluxes. These impacts included increased oxidative stress and elevated
enzymatic activity of ascorbate peroxidase and glutathione reductase. Lipid
content increased and the altered levels of key fatty acids such as
hexadecadienoic (C16:2) and linoleic (C18:2) acids revealed strong correlations
with fluoxetine concentrations tested. Multivariate analyses reinforced the
oxidative stress and chlorophyll a fluorescence-derived traits as efficient
biomarkers for future toxicology studies.info:eu-repo/semantics/publishedVersio
- β¦