225 research outputs found

    Temperature Evolution of Sodium Nitrite Structure in a Restricted Geometry

    Full text link
    The NaNO2_{2} nanocomposite ferroelectric material in porous glass was studied by neutron diffraction. For the first time the details of the crystal structure including positions and anisotropic thermal parameters were determined for the solid material, embedded in a porous matrix, in ferro- and paraelectric phases. It is demonstrated that in the ferroelectric phase the structure is consistent with bulk data but above transition temperature the giant growth of amplitudes of thermal vibrations is observed, resulting in the formation of a "premelted state". Such a conclusion is in a good agreement with the results of dielectric measurements published earlier.Comment: 4 pages, 4 figure

    Giga-Hertz quantized charge pumping in bottom gate defined InAs nanowire quantum dots

    Get PDF
    Semiconducting nanowires (NWs) are a versatile, highly tunable material platform at the heart of many new developments in nanoscale and quantum physics. Here, we demonstrate charge pumping, i.e., the controlled transport of individual electrons through an InAs NW quantum dot (QD) device at frequencies up to 1.3 1.3\,GHz. The QD is induced electrostatically in the NW by a series of local bottom gates in a state of the art device geometry. A periodic modulation of a single gate is enough to obtain a dc current proportional to the frequency of the modulation. The dc bias, the modulation amplitude and the gate voltages on the local gates can be used to control the number of charges conveyed per cycle. Charge pumping in InAs NWs is relevant not only in metrology as a current standard, but also opens up the opportunity to investigate a variety of exotic states of matter, e.g. Majorana modes, by single electron spectroscopy and correlation experiments.Comment: 21 page

    Isomorphs, hidden scale invariance, and quasiuniversality

    Get PDF
    This paper first establishes an approximate scaling property of the potential-energy function of a classical liquid with good isomorphs (a Roskilde-simple liquid). This "pseudohomogeneous" property makes explicit that - and in which sense - such a system has a hidden scale invariance. The second part gives a potential-energy formulation of the quasiuniversality of monatomic Roskilde-simple liquids, which was recently rationalized in terms of the existence of a quasiuniversal single-parameter family of reduced-coordinate constant-potential-energy hypersurfaces [J. C. Dyre, Phys. Rev. E 87, 022106 (2013)]. The new formulation involves a quasiuniversal reduced-coordinate potential-energy function. A few consequences of this are discussed

    Partitioning of on-demand electron pairs

    Get PDF
    We demonstrate the high fidelity splitting of electron pairs emitted on demand from a dynamic quantum dot by an electronic beam splitter. The fidelity of pair splitting is inferred from the coincidence of arrival in two detector paths probed by a measurement of the partitioning noise. The emission characteristic of the on-demand electron source is tunable from electrons being partitioned equally and independently to electron pairs being split with a fidelity of 90%. For low beam splitter transmittance we further find evidence of pair bunching violating statistical expectations for independent fermions

    Simplicity of condensed matter at its core: Generic definition of a Roskilde-simple system

    Get PDF
    The theory of isomorphs is reformulated by defining Roskilde-simple systems (those with isomorphs) by the property that the order of the potential energies of configurations at one density is maintained when these are scaled uniformly to a different density. Isomorphs remain curves in the thermodynamic phase diagram along which structure, dynamics, and excess entropy are invariant, implying that the phase diagram is effectively one-dimensional with respect to many reduced-unit properties. In contrast to the original formulation of the isomorph theory, however, the density-scaling exponent is not exclusively a function of density and the isochoric heat capacity is not an exact isomorph invariant. A prediction is given for the latter quantity's variation along the isomorphs. Molecular dynamics simulations of the Lennard-Jones and Lennard-Jones Gaussian systems validate the new approach

    Contribution to the understanding of tribological properties of graphite intercalation compounds with metal chloride

    Get PDF
    Intrinsic tribological properties of lamellar compounds are usually attributed to the presence of van der Waals gaps in their structure through which interlayer interactions are weak. The controlled variation of the distances and interactions between graphene layers by intercalation of electrophilic species in graphite is used in order to explore more deeply the friction reduction properties of low-dimensional compounds. Three graphite intercalation compounds with antimony pentachloride, iron trichloride and aluminium trichloride are studied. Their tribological properties are correlated to their structural parameters, and the interlayer interactions are deduced from ab initio bands structure calculations

    Isomorph invariance of the structure and dynamics of classical crystals

    Get PDF
    This paper shows by computer simulations that some crystalline systems have curves in their thermodynamic phase diagrams, so-called isomorphs, along which structure and dynamics in reduced units are invariant to a good approximation. The crystals are studied in a classical-mechanical framework, which is generally a good description except significantly below melting. The existence of isomorphs for crystals is validated by simulations of particles interacting via the Lennard-Jones pair potential arranged into a face-centered cubic (FCC) crystalline structure; the slow vacancy-jump dynamics of a defective FCC crystal is also shown to be isomorph invariant. In contrast, a NaCl crystal model does not exhibit isomorph invariances. Other systems simulated, though in less detail, are the Wahnstrom binary Lennard-Jones crystal with the MgZn2{\rm MgZn_2} Laves crystal structure, monatomic FCC crystals of particles interacting via the Buckingham pair potential and via a novel purely repulsive pair potential diverging at a finite separation, an ortho-terphenyl molecular model, and SPC/E hexagonal ice. Except for NaCl and ice, the crystals simulated all have isomorphs. Based on these findings and previous simulations of liquid models, we conjecture that crystalline solids with isomorphs include most or all formed by atoms or molecules interacting via metallic or van der Waals forces, whereas covalently- or hydrogen-bonded crystals are not expected to have isomorphs. Crystals of ions or dipolar molecules constitute a limiting case for which isomorphs are only expected when the Coulomb interactions are relatively weak. We briefly discuss the consequences of the findings for theories of melting and crystallization

    Hidden scale invariance of metals

    Get PDF
    Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between thermal fluctuations between virial and potential-energy in the isochoric ensemble. This demonstrates a general "hidden" scale invariance of metals making the dense part of the thermodynamic phase diagram effectively one dimensional with respect to structure and dynamics. DFT computed density scaling exponents, related to the Gr{\"u}neisen parameter, are in good agreement with experimental values for 16 elements where reliable data were available. Hidden scale invariance is demonstrated in detail for magnesium by showing invariance of structure and dynamics. Computed melting curves of period three metals follow curves with invariance (isomorphs). The experimental structure factor of magnesium is predicted by assuming scale invariant inverse power-law (IPL) pair interactions. However, crystal packings of several transition metals (V, Cr, Mn, Fe, Nb, Mo, Ta, W and Hg), most post-transition metals (Ga, In, Sn, and Tl) and the metalloids Si and Ge cannot be explained by the IPL assumption. Thus, hidden scale invariance can be present even when the IPL-approximation is inadequate. The virial-energy correlation coefficient of iron and phosphorous is shown to increase at elevated pressures. Finally, we discuss how scale invariance explains the Gr{\"u}neisen equation of state and a number of well-known empirical melting and freezing rules.Comment: 12 pages, 11 figure
    • …
    corecore