4,942 research outputs found
Binary Systematic Network Coding for Progressive Packet Decoding
We consider binary systematic network codes and investigate their capability
of decoding a source message either in full or in part. We carry out a
probability analysis, derive closed-form expressions for the decoding
probability and show that systematic network coding outperforms conventional
network coding. We also develop an algorithm based on Gaussian elimination that
allows progressive decoding of source packets. Simulation results show that the
proposed decoding algorithm can achieve the theoretical optimal performance.
Furthermore, we demonstrate that systematic network codes equipped with the
proposed algorithm are good candidates for progressive packet recovery owing to
their overall decoding delay characteristics.Comment: Proc. of IEEE ICC 2015 - Communication Theory Symposium, to appea
Electron-scale reduced fluid models with gyroviscous effects
Reduced fluid models for collisionless plasmas including electron inertia and
finite Larmor radius corrections are derived for scales ranging from the ion to
the electron gyroradii. Based either on pressure balance or on the
incompressibility of the electron fluid, they respectively capture kinetic
Alfv\'en waves (KAWs) or whistler waves (WWs), and can provide suitable tools
for reconnection and turbulence studies. Both isothermal regimes and Landau
fluid closures permitting anisotropic pressure fluctuations are considered. For
small values of the electron beta parameter , a perturbative
computation of the gyroviscous force valid at scales comparable to the electron
inertial length is performed at order , which requires second-order
contributions in a scale expansion. Comparisons with kinetic theory are
performed in the linear regime. The spectrum of transverse magnetic
fluctuations for strong and weak turbulence energy cascades is also
phenomenologically predicted for both types of waves. In the case of moderate
ion to electron temperature ratio, a new regime of KAW turbulence at scales
smaller than the electron inertial length is obtained, where the magnetic
energy spectrum decays like , thus faster than the
spectrum of WW turbulence.Comment: 29 pages, 4 figure
Optimized Network-coded Scalable Video Multicasting over eMBMS Networks
Delivery of multicast video services over fourth generation (4G) networks
such as 3GPP Long Term Evolution-Advanced (LTE-A) is gaining momentum. In this
paper, we address the issue of efficiently multicasting layered video services
by defining a novel resource allocation framework that aims to maximize the
service coverage whilst keeping the radio resource footprint low. A key point
in the proposed system mode is that the reliability of multicast video services
is ensured by means of an Unequal Error Protection implementation of the
Network Coding (UEP-NC) scheme. In addition, both the communication parameters
and the UEP-NC scheme are jointly optimized by the proposed resource allocation
framework. Numerical results show that the proposed allocation framework can
significantly increase the service coverage when compared to a conventional
Multi-rate Transmission (MrT) strategy.Comment: Proc. of IEEE ICC 2015 - Mobile and Wireless Networking Symposium, to
appea
Event Indexing Systems for Efficient Selection and Analysis of HERA Data
The design and implementation of two software systems introduced to improve
the efficiency of offline analysis of event data taken with the ZEUS Detector
at the HERA electron-proton collider at DESY are presented. Two different
approaches were made, one using a set of event directories and the other using
a tag database based on a commercial object-oriented database management
system. These are described and compared. Both systems provide quick direct
access to individual collision events in a sequential data store of several
terabytes, and they both considerably improve the event analysis efficiency. In
particular the tag database provides a very flexible selection mechanism and
can dramatically reduce the computing time needed to extract small subsamples
from the total event sample. Gains as large as a factor 20 have been obtained.Comment: Accepted for publication in Computer Physics Communication
Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects
The effects of the ion Larmor radius on magnetic reconnection are
investigated by means of numerical simulations, with a Hamiltonian gyrofluid
model. In the linear regime, it is found that ion diamagnetic effects decrease
the growth rate of the dominant mode. Increasing ion temperature tends to make
the magnetic islands propagate in the ion diamagnetic drift direction. In the
nonlinear regime, diamagnetic effects reduce the final width of the island.
Unlike the electron density, the guiding center density does not tend to
distribute along separatrices and at high ion temperature, the electrostatic
potential exhibits the superposition of a small scale structure, related to the
electron density, and a large scale structure, related to the ion
guiding-center density
Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects
The effects of the ion Larmor radius on magnetic reconnection are
investigated by means of numerical simulations, with a Hamiltonian gyrofluid
model. In the linear regime, it is found that ion diamagnetic effects decrease
the growth rate of the dominant mode. Increasing ion temperature tends to make
the magnetic islands propagate in the ion diamagnetic drift direction. In the
nonlinear regime, diamagnetic effects reduce the final width of the island.
Unlike the electron density, the guiding center density does not tend to
distribute along separatrices and at high ion temperature, the electrostatic
potential exhibits the superposition of a small scale structure, related to the
electron density, and a large scale structure, related to the ion
guiding-center density
Gyrofluid simulations of collisionless reconnection in the presence of diamagnetic effects
The effects of the ion Larmor radius on magnetic reconnection are
investigated by means of numerical simulations, with a Hamiltonian gyrofluid
model. In the linear regime, it is found that ion diamagnetic effects decrease
the growth rate of the dominant mode. Increasing ion temperature tends to make
the magnetic islands propagate in the ion diamagnetic drift direction. In the
nonlinear regime, diamagnetic effects reduce the final width of the island.
Unlike the electron density, the guiding center density does not tend to
distribute along separatrices and at high ion temperature, the electrostatic
potential exhibits the superposition of a small scale structure, related to the
electron density, and a large scale structure, related to the ion
guiding-center density
Polyphenolic Compounds in Extracts from Roasted Grapevine Canes: An Investigation for a Circular Approach to Increase Sustainability in the Viticulture Sectors
In this study, we compared the polyphenolic composition of the roasted grapevine wood chips of four Vitis vinifera cultivars-namely, Sorbara, Grasparossa, Malbo Gentile, and Spergola. These waste byproducts have the potential as infusion chips for the aging of alcoholic beverages and vinegars, contributing to an enriched sensory profile. Roasting amplifies aromatic nuances and triggers the depletion of crucial bioactive compounds, including polyphenols. We investigated the extent of polyphenolic loss in the ethanolic extract of roasted grapevine chips to repurpose this waste byproduct and assess its potential. We assessed the levels of trans-resveratrol, trans-epsilon- viniferin, trans-piceatannol, and the main resveratrol trimer. Our findings indicated a significant decrease in polyphenol content as the roasting temperature increased, from 16.85-21.12 mg GAE/g for grapevine chips roasted at 120 degrees C to 3.10-7.77 mg GAE/g for those roasted at 240 degrees C. This study also highlights notable genotypic differences in polyphenolic content. Among the red grape cultivars analyzed, Sorbara exhibited the highest levels (7.77-21.12 mg/GAEg), whereas the white grape cultivar Spergola showed the lowest polyphenolic content (3.10-16.85 mg/GAEg). These findings not only contribute to the scientific understanding of polyphenol stability but also hold practical implications for the enhancement of aged beverages, as well as advancing sustainable practices in the viticulture industries
Use of lead isotopic ratios as geographical tracer for Lambrusco PDO wines
In this study, the lead isotope signature was tested with the aim to verify its potential as geographic tracer for wine production and particularly for the Lambrusco PDO wines of the province of Modena (Italy). A solid phase extraction procedure, for separating lead from the investigated matrices, soil and wine, was optimized. Furthermore, different mathematical models, based on an exponential law and internal or external correction approach, were evaluated for the correction of instrumental mass dependent fractionation. The optimized analytical procedure yielded isotopic ratio data relative to the lead NIST 981 standard, 208Pb/206Pb = 2.16664 and 207Pb/206Pb = 0.914645, in good agreement both with the tabulated values and with the most recent literature data. Measured isotope ratio data highlight the contribute of multiple lead sources in bottled wine but different from the one present in soils
On the use of projectors for Hamiltonian systems and their relationship with Dirac brackets
The role of projectors associated with Poisson brackets of constrained
Hamiltonian systems is analyzed. Projectors act in two instances in a bracket:
in the explicit dependence on the variables and in the computation of the
functional derivatives. The role of these projectors is investigated by using
Dirac's theory of constrained Hamiltonian systems. Results are illustrated by
three examples taken from plasma physics: magnetohydrodynamics, the
Vlasov-Maxwell system, and the linear two-species Vlasov system with
quasineutrality
- …