11 research outputs found

    Genome-inspired molecular identification in organic matter via Raman spectroscopy

    Full text link
    Rapid, non-destructive characterization of molecular level chemistry for organic matter (OM) is experimentally challenging. Raman spectroscopy is one of the most widely used techniques for non-destructive chemical characterization, although it currently does not provide detailed identification of molecular components in OM, due to the combination of diffraction-limited spatial resolution and poor applicability of peak-fitting algorithms. Here, we develop a genome-inspired collective molecular structure fingerprinting approach, which utilizes ab initio calculations and data mining techniques to extract molecular level chemistry from the Raman spectra of OM. We illustrate the power of such an approach by identifying representative molecular fingerprints in OM, for which the molecular chemistry is to date inaccessible using non-destructive characterization techniques. Chemical properties such as aromatic cluster size distribution and H/C ratio can now be quantified directly using the identified molecular fingerprints. Our approach will enable non-destructive identification of chemical signatures with their correlation to the preservation of biosignatures in OM, accurate detection and quantification of environmental contamination, as well as objective assessment of OM with respect to their chemical contents

    Hydration behavior by X-ray diffraction profile fitting of smectite-bearing minerals

    No full text
    Clay mineral hydration and dehydration processes are reversible at temperatures <100 °C and strongly affect wellbore stability, fines migration, permeability, and dispersion of pore pressure. The hydration behavior of smectite-rich material as a function of relative humidity (activity of water, aw, controlled by salinity) and temperature was studied using in situ X-ray diffraction on a material retrieved from coring in the Gulf of Mexico. X-ray diffraction profile fitting was used to explore the competition for water between hydratable phases across a range of relative humidity, 2 % to 90 %, and temperature, 25°C to 95°C, conditions. X-ray diffraction profile fitting employed a modified multi-specimen approach in which proportions of minerals were modelled using Ca-exchanged preparations in air-dried and ethylene glycol solvated states. Across the range of hydration states, the mineral proportions and crystallographic parameters remained constant from the multi-specimen approach and only the number of water layers in hydratable phases varied. Quantitative clay mineralogy showed a natural material with a discrete smectite component and a mixed-layered illite-smectite, both capable of hydration/dehydration. Results of this study showed the discrete smectite component and the mixed-layered illite-smectite hydrated at different rates with discrete smectite up-taking more water at lower relative humidity than the mixed-layered illite-smectite. Over geological time this study highlights the non-static nature of smectite hydration with implications of long-term creep and permeability behavior
    corecore