206 research outputs found

    GaAs hetero-epitaxial layers grown by MOVPE on exactly-oriented and off-cut (1 1 1)Si: Lattice tilt, mosaicity and defects content

    Get PDF
    Integration of III-V devices with Si-photonics and fabrication of monolithic III-V/Si tandem solar cells require the heteroepitaxy of III-V compounds on Si. We report on the lattice tilt, mosaicity and defects content of relaxed GaAs grown by MOVPE on exactly-oriented and 4°-offcut (1 1 1)Si. Thin GaAs single-layers grown at 400 °C and annealed at 700 °C show ∼ 3×10^8 cm−2 density of surface pinholes. Double-layer samples were obtained by GaAs overgrowth at 700 °C. GaAs epilayers are tilted by (0.05–0.14)° with respect to Si. Rotational twins were observed in X-ray diffraction (XRD) pole figures: the most abundant ones originate from 60°-rotation of GaAs around the [1 ̄1 ̄1 ̄] growth direction and are identified as micro-twins along the GaAs/Si hetero-interface. Twins obtained by rotations around the [1 ̄1 ̄1], [11 ̄1 ̄], and [1 ̄11 ̄] directions or by combined rotations around the growth direction and one of the former, were also observed. The GaAs mosaicity and block size were studied through high-resolution XRD intensity mapping: for single-layer samples crystal blocks are ascribed to 3–5 nm thin micro-twins, whose size does not change upon annealing. In double-layer samples thicker (32–35 nm) micro-twins occur. GaAs samples grown on offcut (1 1 1)Si show less rotational twins but a reduced mosaic block size with respect to exactly-oriented Si

    Microstructural and morphological properties of homoepitaxial (001)ZnTe layers investigated by x-ray diffuse scattering

    Full text link
    The microstructural and morphological properties of homoepitaxial (001)ZnTe layers are investigated by x-ray diffuse scattering. High resolution reciprocal space maps recorded close to the ZnTe (004) Bragg peak show different diffuse scattering features. One kind of cross-shaped diffuse scattering streaks along directions can be attributed to stacking faults within the epilayers. Another kind of cross-shaped streaks inclined at an angle of about 80deg with respect to the in-plane direction arises from the morphology of the epilayers. (abridged version

    Light-emitting nanocomposite cds-polymer electrospun fibres via in-situ nanoparticle generation

    Get PDF
    We report on the simple, in situ generation of CdS nanocrystals inside electrospun polymer fibres by thermal decomposition of a cadmium thiolate precursor, leading to nanocomposite light-emitting fibres. The modifications induced in the precursor by the thermal decomposition are investigated by a morphological, structural and spectroscopic analysis of the resulting nanocomposite fibres. This approach allows us to overcome nanofabrication difficulties related to disfavoured micro- or nanofluidic molecular flow as given by the direct incorporation of particles in the electrospinning solution. This method therefore enables the synthesis of luminescent, CdS-based composite fibres with emission peaked in the visible range, suitable as building blocks for nanophotonic devices based on light-emitting nanomaterials

    Patterned structures of in situ size controlled CdS nanocrystals in a polymer matrix under UV irradiation.

    Get PDF
    A method of in situ formation of patterns of size controlled CdS nanocrystals in a polymer matrix by pulsed UV irradiation is presented. The films consist of Cd thiolate precursors with different carbon chain lengths embedded in TOPAS polymer matrices. Under UV irradiation the precursors are photolyzed, driving to the formation of CdS nanocrystals in the quantum size regime, with size and concentration defined by the number of incident UV pulses, while the host polymer remains macroscopically/microscopically unaffected. The emission of the formed nanocomposite materials strongly depends on the dimensions of the CdS nanocrystals, thus, their growth at the different phases of the irradiation is monitored using spatially resolved photoluminescence by means of a confocal microscope. X-ray diffraction measurements verified the existence of the CdS nanocrystals, and defined their crystal structure for all the studied cases. The results are reinforced by transmission electron microscopy. It is proved that the selection of the precursor determines the efficiency of the procedure, and the quality of the formed nanocrystals. Moreover it is demonstrated that there is the possibility of laser induced formation of well-defined patterns of CdS nanocrystals, opening up new perspectives in the development of nanodevices

    Roentgendiffraktometrische Untersuchungen zur Gitterverzerrung in Silizium

    No full text
    With 118 refs. and 72 figs.SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    • …
    corecore