234 research outputs found

    Phenomenological analysis of quantum collapse as source of the seeds of cosmic structure

    Full text link
    The standard inflationary version of the origin of the cosmic structure as the result of the quantum fluctuations during the early universe is less than fully satisfactory as has been argued in [A. Perez, H. Sahlmann, and D. Sudarsky, Class. Quantum Grav., 23, 2317, (2006)]. A proposal is made there of a way to address the shortcomings by invoking a process similar to the collapse of the quantum mechanical wave function of the various modes of the inflaton field. This in turn was inspired on the ideas of R. Penrose about the role that quantum gravity might play in bringing about such breakdown of the standard unitary evolution of quantum mechanics. In this paper we study in some detail the two schemes of collapse considered in the original work together with an alternative scheme, which can be considered as "more natural" than the former two. The new scheme, assumes that the collapse follows the correlations indicated in the Wigner functional of the initial state. We end with considerations regarding the degree to which the various schemes can be expected to produce a spectrum that resembles the observed one.Comment: 18 pages, 9 figure

    Continuous distribution of frequencies and deformed dispersion relations

    Full text link
    The possibilities that, in the realm of the detection of the so--called deformed dispersion relation, a light source with a continuous distribution of frequencies offers is discussed. It will be proved that the presence of finite coherence length entails the emergence of a new term in the interference pattern. This is a novel trait, which renders a new possibility in the quest for bounds associated with these deformed dispersion relations.Comment: Accepted in Classical and Quantum Gravit

    Exoplanet albedo spectra and colors as a function of planet phase, separation, and metallicity

    Get PDF
    First generation optical coronagraphic telescopes will obtain images of cool gas and ice giant exoplanets around nearby stars. The albedo spectra of exoplanets at planet-star separations larger than about 1 AU are dominated by reflected light to beyond 1 {\mu}m and are punctuated by molecular absorption features. We consider how exoplanet albedo spectra and colors vary as a function of planet-star separation, metallicity, mass, and observed phase for Jupiter and Neptune analogs from 0.35 to 1 {\mu}m. We model Jupiter analogs with 1x and 3x the solar abundance of heavy elements, and Neptune analogs with 10x and 30x. Our model planets orbit a solar analog parent star at separations of 0.8 AU, 2 AU, 5 AU, and 10 AU. We use a radiative-convective model to compute temperature-pressure profiles. The giant exoplanets are cloud-free at 0.8 AU, have H2O clouds at 2 AU, and have both NH3 and H2O clouds at 5 AU and 10 AU. For each model planet we compute moderate resolution spectra as a function of phase. The presence and structure of clouds strongly influence the spectra. Since the planet images will be unresolved, their phase may not be obvious, and multiple observations will be needed to discriminate between the effects of planet-star separation, metallicity, and phase. We consider the range of these combined effects on spectra and colors. For example, we find that the spectral influence of clouds depends more on planet-star separation and hence temperature than metallicity, and it is easier to discriminate between cloudy 1x and 3x Jupiters than between 10x and 30x Neptunes. In addition to alkalis and methane, our Jupiter models show H2O absorption features near 0.94 {\mu}m. We also predict that giant exoplanets receiving greater insolation than Jupiter will exhibit higher equator to pole temperature gradients than are found on Jupiter and thus may have differing atmospheric dynamics.Comment: 62 pages, 19 figures, 6 tables Accepted for publication in Ap

    On the puzzle of Bremsstrahlung as described by coaccelerated observers

    Full text link
    We consider anew some puzzling aspects of the equivalence of the quantum field theoretical description of Bremsstrahlung from the inertial and accelerated observer's perspectives. More concretely, we focus on the seemingly paradoxical situation that arises when noting that the radiating source is in thermal equilibrium with the thermal state of the quantum field in the wedge in which it is located, and thus its presence does not change there the state of the field, while it clearly does not affect the state of the field on the opposite wedge. How then is the state of the quantum field on the future wedge changed, as it must in order to account for the changed energy momentum tensor there? This and related issues are carefully discussed.Comment: 29 pages, 1 figure; Revtex, minor changes, PACS correcte

    A window to quantum gravity phenomena in the emergence of the seeds of cosmic structure

    Full text link
    Inflationary cosmology has, in the last few years,received a strong dose of support from observations. The fact that the fluctuation spectrum can be extracted from the inflationary scenario through an analysis that involves quantum field theory in curved space-time, and that it coincides with the observational data has lead to a certain complacency in the community, which prevents the critical analysis of the obscure spots in the derivation. We argue here briefly, as we have discussed in more detail elsewhere, that there is something important missing in our understanding of the origin of the seeds of Cosmic Structure, as is evidenced by the fact that in the standard accounts the inhomogeneity and anisotropy of our universe seems to emerge from an exactly homogeneous andisotropic initial state through processes that do not break those symmetries. This article gives a very brief recount of the problems faced by the arguments based on established physics. The conclusion is that we need some new physics to be able to fully address the problem. The article then exposes one avenue that has been used to address the central issue and elaborates on the degree to which, the new approach makes different predictions from the standard analyses. The approach is inspired on Penrose's proposals that Quantum Gravity might lead to a real, dynamical collapse of the wave function, a process that we argued has the properties needed to extract us from the theoretical impasse described above.Comment: 13 pages, 3 figures. To appear in DICE 2008 conference proceeding

    Stability analysis of cosmological models through Liapunov's method

    Get PDF
    We investigate the general asymptotic behaviour of Friedman-Robertson-Walker (FRW) models with an inflaton field, scalar-tensor FRW cosmological models and diagonal Bianchi-IX models by means of Liapunov's method. This method provides information not only about the asymptotic stability of a given equilibrium point but also about its basin of attraction. This cannot be obtained by the usual methods found in the literature, such as linear stability analysis or first order perturbation techniques. Moreover, Liapunov's method is also applicable to non-autonomous systems. We use this advantadge to investigate the mechanism of reheating for the inflaton field in FRW models.Comment: Latex file, 8 pages, no figures, accepted for publication in Class. & Quant. Gra

    Stability of self-gravitating magnetic monopoles

    Get PDF
    The stability of a spherically symmetric self-gravitating magnetic monopole is examined in the thin wall approximation: modeling the interior false vacuum as a region of de Sitter space; the exterior as an asymptotically flat region of the Reissner-Nordstr\"om geometry; and the boundary separating the two as a charged domain wall. There remains only to determine how the wall gets embedded in these two geometries. In this approximation, the ratio kk of the false vacuum to surface energy densities is a measure of the symmetry breaking scale η\eta. Solutions are characterized by this ratio, the charge on the wall QQ, and the value of the conserved total energy MM. We find that for each fixed kk and QQ up to some critical value, there exists a unique globally static solution, with MQ3/2M\simeq Q^{3/2}; any stable radial excitation has MM bounded above by QQ, the value assumed in an extremal Reissner-Nordstr\"om geometry and these are the only solutions with M<QM<Q. As MM is raised above QQ a black hole forms in the exterior: (i) for low QQ or kk, the wall is crushed; (ii) for higher values, it oscillates inside the black hole. If the mass is not too high these `collapsing' solutions co-exist with an inflating bounce; (iii) for kk, QQ or MM outside the above regimes, there is a unique inflating solution. In case (i) the course of the bounce lies within a single asymptotically flat region (AFR) and it resembles closely the bounce exhibited by a false vacuum bubble (with Q=0). In cases (ii) and (iii) the course of the bounce spans two consecutive AFRs.Comment: 19 pages, RevTex two cols., 11 eps figs. Submitted to Phys. Rev.

    A comparison of spectroscopic methods for detecting starlight scattered by transiting hot Jupiters, with application to Subaru data for HD 209458b and HD 189733b

    Full text link
    The measurement of the light scattered from extrasolar planets informs atmospheric and formation models. With the discovery of many hot Jupiter planets orbiting nearby stars, this motivates the development of robust methods of characterisation from follow up observations. In this paper we discuss two methods for determining the planetary albedo in transiting systems. First, the most widely used method for measuring the light scattered by hot Jupiters (Collier Cameron et al.) is investigated for application for typical echelle spectra of a transiting planet system, showing that detection requires high signal-to-noise ratio data of bright planets. Secondly a new Fourier analysis method is also presented, which is model-independent and utilises the benefits of the reduced number of unknown parameters in transiting systems. This approach involves solving for the planet and stellar spectra in Fourier space by least-squares. The sensitivities of the methods are determined via Monte Carlo simulations for a range of planet-to-star fluxes. We find the Fourier analysis method to be better suited to the ideal case of typical observations of a well constrained transiting system than the Collier Cameron et al. method. We apply the Fourier analysis method for extracting the light scattered by transiting hot Jupiters from high resolution spectra to echelle spectra of HD 209458 and HD 189733. Unfortunately we are unable to improve on the previous upper limit of the planet-to-star flux for HD 209458b set by space-based observations. A 1{\sigma}upper limit on the planet-to-star flux of HD 189733b is measured in the wavelength range of 558.83-599.56 nm yielding {\epsilon} < 4.5 \times 10-4. Improvement in the measurement of the upper limit of the planet-to-star flux of this system, with ground-based capabilities, requires data with a higher signal-to-noise ratio, and increased stability of the telescope.Comment: 15 pages, 8 figures, 2 tables. Monthly Notices of the Royal Astronomical Society, in press. Accepted 2011 March 17. Received 2011 March 17; in original form 2010 June 2

    Modeling Multi-Wavelength Stellar Astrometry. III. Determination of the Absolute Masses of Exoplanets and Their Host Stars

    Full text link
    Astrometric measurements of stellar systems are becoming significantly more precise and common, with many ground and space-based instruments and missions approaching 1 microarcsecond precision. We examine the multi-wavelength astrometric orbits of exoplanetary systems via both analytical formulae and numerical modeling. Exoplanets have a combination of reflected and thermally emitted light that cause the photocenter of the system to shift increasingly farther away from the host star with increasing wavelength. We find that, if observed at long enough wavelengths, the planet can dominate the astrometric motion of the system, and thus it is possible to directly measure the orbits of both the planet and star, and thus directly determine the physical masses of the star and planet, using multi-wavelength astrometry. In general, this technique works best for, though is certainly not limited to, systems that have large, high-mass stars and large, low-mass planets, which is a unique parameter space not covered by other exoplanet characterization techniques. Exoplanets that happen to transit their host star present unique cases where the physical radii of the planet and star can be directly determined via astrometry alone. Planetary albedos and day-night contrast ratios may also be probed via this technique due to the unique signature they impart on the observed astrometric orbits. We develop a tool to examine the prospects for near-term detection of this effect, and give examples of some exoplanets that appear to be good targets for detection in the K to N infrared observing bands, if the required precision can be achieved.Comment: Accepted to the Astrophysical Journal. 9 pages, 6 figures, 1 table in emulateapj forma
    corecore