229 research outputs found

    Mineral physics of the mantle

    Get PDF
    The last few years have seen intense interest in the global environment and climate change, and with it an increasing appreciation for the interactions between the atmosphere, biosphere, oceans and the solid earth. In solid earth geophysics, the traditional boundaries between the earth's fluid and solid spheres have been breached by the growing body of evidence that they may physically communicate on a massive scale, that atmospheric constituents, under certain conditions, may be transported to and stored within the deepest parts of the earth. Of course there has for some time been an appreciation for influence of mantle dynamics, the driving force of plate tectonics, volcanism, and seismicity, on surface processes. However, perhaps nothing illustrates the essential connections better than visualizing, now with some experimental and observational support, a tropospheric molecule, transported through sedimentary and tectonic agents 3000 km to the core mantle boundary, only to rise again, perhaps many millions of years later in a volcanic eruption

    Stability of (Mg,Fe)SiO3 perovskite and the structure of the lowermost mantle

    Get PDF
    Thermodynamic analysis shows that (Mg,Fe)SiO3 perovskite is stable throughout the likely pressure, temperature and compositional regime of the Earth's mantle. The breakdown of perovskite to its constituent oxides appears unlikely, even under the extreme conditions of the core-mantle boundary. This reaction had been proposed to reconcile estimates of silicate melting with seismic observation and proposed geotherms

    Compression of tetrahedrally bonded SiO2 liquid and silicate liquid‐crystal density inversion

    Get PDF
    We have investigated the response to pressure of liquid SiO2 by performing a quantitatively realistic Monte Carlo simulation. The model liquid was restricted to at most four‐fold Si‐O coordination by the effective imposition of an infinite potential barrier to a fifth bond. We thus obtained an unambiguous comparison of the compression mechanisms of solid and liquid tetrahedral networks. In spite of this restriction, the density of the simulated liquid exceeds that of the corresponding models of quartz, coesite and cristobalite at high pressure. The efficient compression of the liquid results from a continuous restructuring of the network that leaves the mean Si‐Si distance virtually unchanged and does not require an increase in the coordination number. The restructuring is effected by local breaking and reconnecting of bonds, a mechanism that is not available to a perfect crystal

    Ab initio study of the elastic behavior of MgSiO3 ilmenite at high pressure

    Get PDF
    We investigate the athermal high pressure behavior of the elastic properties of MgSiO3 ilmenite up to 30 GPa using the ab initio pseudopotential method. Our results at zero pressure are in good agreement with single-crystal elasticity measurements. The elastic anisotropy is shown to decrease slightly under compression and hence to remain substantial (25 to 20% shear wave anisotropy and 16 to 10% longitudinal wave anisotropy) over the pressure regime studied. The directions of fastest and slowest wave propagation are found to change slightly with pressure as determined by the pressure dependence of c(14) and c(25). Comparisons with the elastic behavior of other deep transition zone phases such as ringwoodite and garnet show that ilmenite is likely to be the fastest and most anisotropic mineral in this region. Large contrasts (approximate to 10%) in velocities and densities between ilmenite and garnet are suggested to be significant for the interpretation of lateral structure in the transition zone

    Spin crossover in liquid (Mg,Fe)O at extreme conditions

    Get PDF
    We use first-principles free-energy calculations to predict a pressure-induced spin crossover in the liquid planetary material (Mg,Fe)O, whereby the magnetic moments of Fe ions vanish gradually over a range of hundreds of GPa. Because electronic entropy strongly favors the nonmagnetic low-spin state of Fe, the crossover has a negative effective Clapeyron slope, in stark contrast to the crystalline counterpart of this transition-metal oxide. Diffusivity of liquid (Mg,Fe)O is similar to that of MgO, displaying a weak dependence on element and spin state. Fe-O and Mg-O coordination increases from approximately 4 to 7 as pressure goes from 0 to 200 GPa. We find partitioning of Fe to induce a density inversion between the crystal and melt, implying separation of a basal magma ocean from a surficial one in the early Earth. The spin crossover induces an anomaly into the density contrast, and the oppositely signed Clapeyron slopes for the crossover in the liquid and crystalline phases imply that the solid-liquid transition induces a spin transition in (Mg,Fe)O

    Thermal Conductivity of Periclase (MgO) from First Principles

    Get PDF
    We combine first-principles calculations of forces with the direct nonequilibrium molecular dynamics method to determine the lattice thermal conductivity k of periclase (MgO) up to conditions representative of the Earth's core-mantle boundary (136 GPa, 4100 K). We predict the logarithmic density derivative a = (partial derivative lnk/partial derivative ln rho)(Tau) = 4.6 +/- 1.2 and that k = 20 +/- 5 Wm(-1) K-1 at the core-mantle boundary, while also finding good agreement with extant experimental data at much lower pressures

    Calculated elastic constants and anisotropy of Mg2SiO4 spinel at high pressure

    Get PDF
    We calculated the elastic properties of Mg2SiO4 spinel, using the plane-wave pseudopotential method. The athermal elastic constants were calculated directly from the stress-strain relations up to 30 GPa, which encompasses the experimentally observed stability field of spinel. The calculated elastic constants are in very good agreement with Brillouin scattering data at zero pressure. We calculated the isotropically averaged elastic wave velocities and the anisotropy from our single crystal elastic constants. We find that the elastic anisotropy is weak (azimuthal and polarization anisotropy of S-waves: 5%, azimuthal P-wave anisotropy: 2.5%, at zero pressure) compared to other silicates and oxides. The anisotropy decreases initially with increasing pressure, changing sign at 17GPa before increasing in magnitude at higher pressures. At typical pressures of the earth's transition zone (20-25 GPa), the elastic anisotropy is 1% and 2% for P- and S-waves respectively

    High-pressure elastic properties of major materials of Earth's mantle from first principles

    Get PDF
    The elasticity of materials is important for our understanding of processes ranging from brittle failure, to flexure, to the propagation of elastic waves. Seismologically revealed structure of the Earth's mantle, including the radial (one-dimensional) profile, lateral heterogeneity, and anisotropy are determined largely by the elasticity of the materials that make up this region. Despite its importance to geophysics, our knowledge of the elasticity of potentially relevant mineral phases at conditions typical of the Earth's mantle is still limited: Measuring the elastic constants at elevated pressure-temperature conditions in the laboratory remains a major challenge. Over the past several years, another approach has been developed based on first-principles quantum mechanical theory. First-principles calculations provide the ideal complement to the laboratory approach because they require no input from experiment; that is, there are no free parameters in the theory. Such calculations have true predictive power and can supply critical information including that which is difficult to measure experimentally. A review of high-pressure theoretical studies of major mantle phases shows a wide diversity of elastic behavior among important tetrahedrally and octahedrally coordinated Mg and Ca silicates and Mg, Ca, Al, and Si oxides. This is particularly apparent in the acoustic anisotropy, which is essential for understanding the relationship between seismically observed anisotropy and mantle flow. The acoustic anisotropy of the phases studied varies from zero to more than 50% and is found to depend on pressure strongly, and in some cases nonmonotonically. For example, the anisotropy in MgO decreases with pressure up to 15 GPa before increasing upon further compression, reaching 50% at a pressure of 130 GPa. Compression also has a strong effect on the elasticity through pressure-induced phase transitions in several systems. For example, the transition from stishovite to CaCl2 structure in silica is accompanied by a discontinuous change in the shear (S) wave velocity that is so large (60%) that it may be observable seismologically. Unifying patterns emerge as well: Eulerian finite strain theory is found to provide a good description of the pressure dependence of the elastic constants for most phases. This is in contrast to an evaluation of Birch's law, which shows that this systematic accounts only roughly for the effect of pressure, composition, and structure on the longitudinal (P) wave velocity. The growing body of theoretical work now allows a detailed comparison with seismological observations. The athermal elastic wave velocities of most important mantle phases are found to be higher than the seismic wave velocities of the mantle by amounts that are consistent with the anticipated effects of temperature and iron content on the P and S wave velocities of the phases studied. An examination of future directions focuses on strategies for extending first-principles studies to more challenging but geophysically relevant situations such as solid solutions, high-temperature conditions, and mineral composites

    Electrical conductivity of SiO2 at extreme conditions and planetary dynamos

    Get PDF
    Ab intio molecular dynamics simulations show that the electrical conductivity of liquid SiO2 is semimetallic at the conditions of the deep molten mantle of early Earth and super-Earths, raising the possibility of silicate dynamos in these bodies. Whereas the electrical conductivity increases uniformly with increasing temperature, it depends nonmonotonically on compression. At very high pressure, the electrical conductivity decreases on compression, opposite to the behavior of many materials. We show that this behavior is caused by a novel compression mechanism: the development of broken charge ordering, and its influence on the electronic band gap
    corecore