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Ab intio molecular dynamics simulations show that the electrical
conductivity of liquid SiO

2

is semi-metallic at the conditions of the
deep molten mantle of the early Earth and super-Earths, raising the
possibility of silicate dynamos in these bodies. Whereas the elec-
trical conductivity increases uniformly with increasing temperature,
it depends non-monotonically on compression. At very high pres-
sure, the electrical conductivity decreases on compression, oppo-
site to the behavior of many materials. We show that this behavior
is caused by a novel compression mechanism: the development of
broken charge ordering, and its influence on the electronic band gap.
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P lanetary magnetic fields are produced by a dynamo pro-
cess via fluid motions in a large rotating body of elec-

trically conducting fluid within the planet’s interior. In the
present day Earth, the liquid portion of the iron-rich core
produces the magnetic field. Early in Earth’s history and
before the inner core began to grow, the core may not have
been able to cool su�ciently rapidly to sustain a dynamo (1).
However, the rock record contains evidence for an ancient field
of similar intensity to today’s field within the first few 100
million years of Earth’s history (2). What caused this early
magnetic field is still unknown.

The Earth is thought to have been largely or completely
molten early in its history (3). While the shallow portions of
the magma ocean cooled quickly (4), a basal magma ocean,
separated from the surface by a crystallizing layer, may have
survived for a billion years or more (5). Could the basal magma
ocean have produced a magnetic field? While a variety of
di�erent materials produce planetary magnetic fields, including
iron, hydrogen, and ice, silicate dynamos are so far unknown
(6).

A key uncertainty is the electrical conductivity ‡ of silicate
liquid at the pressure-temperature conditions of the basal
magma ocean (100 GPa, 5000 K). The conductivity must be
su�ciently high for the dynamo process to operate. Recent
models indicate that ‡ > 103 ≠ 104 S m≠1 is required (7).
The possibility of silicate dynamos is not only relevant to the
early Earth. Silicates appear to be the primary constituents of
many super-Earth exoplanets. These planets may have hotter
interiors that cool more slowly than Earth and may contain
larger and longer lived basal magma oceans, so that Super-
Earths may also have silicate dynamos. The conditions at the
base of a 10 Earth mass Super-Earth mantle are expected to
be 1000 GPa and 13,000 K (8).

Near ambient pressure, the electrical conductivity of silicate
liquids is far too small to support dynamo activity and the
dominant charge carriers are ions (9). However, experimental

evidence suggests that the electrical conductivity of silicate
liquids may be much greater at high pressure and temperature
and that the dominant charge carriers may be electrons. Ox-
ide liquids are found to become optically reflective along the
Hugoniot at pressures of several hundred GPa (10–12). The
electrical conductivity is not measured in shock wave studies,
but inferred from the optical reflectivity via a Drude model.
Previous theoretical calculations have relied on approxima-
tions to the exchange-correlation functional which are known
to underestimate the electronic band gap (13, 14), leaving
open the question of whether these simulations substantially
overestimated ‡.

Existing studies leave unclear the mechanism by which
silicate liquids become reflective at high pressure. It is known
from experiment and theory that the pressure-induced change
of the structure of silicate liquids can be characterized by an
increase in the Si-O coordination number from 4 near ambi-
ent pressure towards 9 at high pressure (15–17). A recent
theoretical study argued that increased coordination was re-
sponsible for enhanced electrical conductivity at high pressure
(14). However, the connection between coordination change
and conductivity is not apparent. It has been suggested that
the changes in silicate liquid structure on compression can
be characterized by dissociation which, by analogy with that
seen in hydrogen and oxygen, might explain closure of the
electronic band gap (10, 13). However, hydrogen and oxygen
are molecular rather than ionic systems and it is not clear the
extent to which the analogy is suitable.

Here, we find that the electronic conductivity of liquid SiO
2

is su�ciently large to support a silicate dynamo, based on
a more accurate approximation to the exchange-correlation
functional than used in previous studies (HSE06) (18). Our
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Fig. 1. Ab initio electrical conductivity computed with PBEsol (full lines and closed
symbols) and with HSE06 (open symbols). We also compare with the Mott-Ziman
theoy (dashed lines, see text) and the minimum metallic conductivity of Mott (19) (grey
band) .

Fig. 2. Electronic density of states at 50,000 K (top) and 10,000 K (bottom) over the
density range explored compared with the free-electron density of states at fl=3.67
g cm≠3 (black dashed line), and the contribution of the oxygen p band at the same
density (dashed green line).

results further show a remarkable non-monotonic dependence
of the electrical conductivity on compression. This behavior is
crucial for revealing the connection between structural change
and electronic and thermodynamic properties at high pressure.
We show that a new mode of high-pressure structural change:
broken charge ordering, is responsible for the variation of
electrical conductivity with density and temperature.

Our first principles molecular dynamics simulations show
that at high temperature (T Ø 20,000 K) the electrical con-
ductivity increases monotonically with compression, reach-
ing half the minimum metallic value at the highest pressure-
temperature conditions explored (Fig. 1). For example, at
50,000 K, the conductivity increases by a factor of 3 from
fl=2.2 to fl=7.33 g cm≠3 where ‡=4 ◊ 105 S m≠1. The elec-
trical conductivity increases with increasing temperature at
all densities, for example, by a factor of 30 between 4000 K
and 50,000 K at fl=3.67 g cm≠3.

At lower temperature (T Æ 10, 000 K), the conductivity
displays a maximum value at intermediate compression (Fig.
1). The conductivity increases with compression from fl=2.2 to
fl=3.67 g cm≠3 and then decreases on further compression, by
a factor of ten from fl=3.67 to fl = 7.33 g cm≠3 at 6000 K. The
tendency for the conductivity to decrease with compression
at very high pressure was also noted in a previous study (14),
although that study did not explore the pressure-temperature
range necessary to reveal the extremum that we find. The
electrical conductivity computed with the HSE06 functional is
lower than that computed with PBEsol, as expected, although
the di�erence is not large (< 25 % (Fig. 1)).

To understand our results, we have examined the electronic
structure (Fig. 2 and Supplementary Information). At high
temperature, the electronic density of states is nearly free-
electron like. There is no gap and the density of states at
the Fermi level is within 5 % of the free electron value. As
the valence electrons are only weakly bound we expect the
Ziman theory (20) to yield a reasonable approximation to
the conductivity. As expected, the Ziman formula reproduces
our first principles results for the electrical conductivity to
within 30 % at T Ø 20,000 K (Fig. S4). It fails, however,
at lower temperature: the Ziman theory cannot capture the
local maximum in ‡ that appears near fl=3.67 g cm≠3 for T Æ
10,000 K.

The Ziman formula fails at lower temperature because the
electronic structure is no longer free-electron like (Fig. 2).
A prominent pseudo-gap appears in the electronic density of
states, which deepens on compression. The appearance of a
pseudo-gap on cooling, which is in excellent agreement with

Fig. 3. Structure factors at fl=7.33 g cm≠3 (top) and T =10,000 K (bottom).

Fig. 4. Radial distribution function of SiO2 (green) compared with that of isoelectronic
Ne (black) at 10,000 K. The inset shows the comparison at fl=7.33 g cm≠3 and 50,000
K (SiO2: red, Ne: black). Schematics illustrate (top) charge ordering characteristic of
silicate liquids, consisting of alternating neighbor shells of cations (blue) and anions
(red), and (bottom) the broken charge ordered structure characteristic of extreme
pressure in which the nearest neighbor shell contains like as well as unlike charged
ions.

Fig. 5. Isochoric heat capacity (top) and reflectivity at 532 nm (bottom) for SiO2
along the fused silica (red) and quartz (blue) Hugoniots. Lines are our results, while
experimental data are shown as open circles (10) and squares (26). The black circles
indicate the heat capacity computed via finite difference between the two Hugoniots. In
the lower figure the colored bands indicate the sensitivity to the exchange-correlation
functional comparing PBEsol results (upper lines) with those of HSE06 (lower lines).

experimental XANES spectra (21), has a profound e�ect on
the electrical conductivity. To see this, we recall that the
conductivity diminishes with the density of states at the Fermi
level. In the Mott-Ziman theory (22, 23)

‡
MZ

= g2‡
Z

[1]

where ‡
Z

is the Ziman result and

g = N̄(µ)
N

F ree

(E
F

) [2]

is the ratio of the temperature-smoothed density of states at
the chemical potential N̄(µ) to that of the free electron system
N

F ree

. At 10,000 K, the value of g2 diminishes from 0.64 at
fl = 3.67 g cm≠3 to 0.22 at fl = 7.33 g cm≠3 accounting for
the drop in conductivity over this density range. The good
agreement between our results and the Mott-Ziman theory (to
within 30 % at all conditions, Fig. 1) shows that the pressure-
induced decrease in the conductivity at high pressure and low
temperature is caused by the decrease in g as the pseudo-gap
deepens on compression.

It remains to relate the appearance of the pseudogap to the
structure of the liquid. For liquids, in the nearly free electron
limit, the pseudogap appears because of scattering of electronic
states from density fluctuations in the liquid as measured by
the structure factor, S(q) (24, 25). The amplitude of the first
peak in the structure factor varies considerably on compression
and cooling (Fig. 3). The depth of the pseudogap ” increases
linearly with the amplitude of the first peak in the structure
factor S(q

P

) as ” ¥ 2[S(q
P

) ≠ 1]|w(q
P

)|, where w(q) is the
e�ective electron-ion interaction (25). For example, at 10,000
K, S(q

P

) ≠ 1 increases four-fold from fl=3.67 to fl=7.33 g
cm≠3, in reasonable accord with the three-fold decrease in
the the density of states at the Fermi level over the same
range of compression. We see a similar pattern on cooling: as
S(q

P

) grows (Fig. 3), the pseudogap deepens and the electrical
conductivity diminishes.

Our simulations highlight a novel mode of compression
in silicate liquids that accounts for the growth of the first
peak in the structure factor on compression (Fig. 4). At
low pressure, it is well known that silicate liquid structure is
dominated by charge-ordering as is typical of ionically bonded
systems: cations are surrounded by a first neighbor shell of
anions and vice versa, producing well separated peaks for Si-O
and O-O correlations. For example, in SiO

2

liquid at low
pressure, the O-O distance (2.6 Å) is much larger than the
Si-O distance (1.6 Å) (27). At very high pressure, we find that
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charge-ordering breaks down. Like charges begin to appear in
the first coordination shell, Si-O and O-O peaks overlap and
the liquid structure approaches that of isoelectronic neon (Fig.
4). This peak overlap accounts for the large increase in the
amplitude of the first peak in the structure factor as density
increases from fl=3.67 to fl=7.33 g cm≠3 (Fig. 3).

Broken charge ordering is also important in high pressure
silicate crystal structures. The novel high pressure structure of
(28) shows remarkably high 10-fold Si-O coordination. Using
the reported atomic coordinates and lattice parameters we have
analyzed the predicted structure and found another remarkable
feature: the smallest O-O distance (1.754 Å) is less than the
smallest Si-O distance (1.790 Å). The crowding of O atoms
at high pressure leads to more e�cient packing as shorter-
ranged repulsive forces begin to dominate over longer-ranged
Coulombic forces. This behavior recalls predictions in simple
ionic systems, such as CsI, where the structure approaches
that of isoelectronic Xe at high pressure (29). In SiO

2

much
higher pressures are required to break the charge ordering as
compared with CsI, because the ionic bonding in SiO

2

is much
stronger. Crowding and increased interaction among O atoms
also influences the electronic structure by producing increased
hybridization of the O valence states with conduction bands,
dominating the electronic density of states in the vicinity of
the pseudo-gap (Fig. 2).

Previous studies have interpreted the variation of the heat
capacity along the Hugoniot to indicate dissociation of SiO

2

at large compressions, a pattern of structural change very
di�erent to what we have described. To examine this di�erence
more closely, we have computed the heat capacity along the
Hugoniot from our simulations. The ab initio heat capacity
shows variations with temperature along the Hugoniot very
similar to that found experimentally (Fig. 5). We interpret
these variations as non-dissociative changes in atomic and
electronic structure that are common to a wide variety of
liquids.

At the highest temperatures (T > 30,000 K), the heat
capacity increases on heating, reflecting the increase with tem-
perature of the electronic contribution to the heat capacity,
Cel

V

. The increase of Cel

V

on heating reflects the growing den-
sity of states at the Fermi level with increasing temperature
(Fig. 2), behavior that is seen in many silicate liquids (30).
At intermediate temperature (10,000 K < T < 30,000 K), the
heat capacity decreases with increasing temperature. At these
conditions, the non-electronic contribution to the heat capacity
Cion

V

dominates. This behavior is seen in a wide variety of liq-
uids, including simple, non-bonded liquids interacting through
hard sphere or soft-sphere potentials. Fundamental measure
theory (31) predicts C

V

Ã T ≠2/5 in approximate accord with
our results for silica liquid. We have previously found that a
variety of silicate liquids closely follow this relation over a wide
range of temperature (30). The heat capacity is everywhere
much larger than the Dulong-Petit value, reflecting structural
degrees of freedom in the liquid that are unavailable to solids.
Indeed, previous studies have shown that the structure of
silicate liquids changes substantially on isochoric heating. For
example, in SiO

2

liquid at low pressure, the liquid structure,
characterized by almost perfect 4-fold Si-O coordination at
the lowest temperatures, shows increasing numbers of 5- and
3-coordinated Si on isochoric heating (27). The rate of struc-
tural change initially increases on heating, and then saturates,

producing a local maximum in the heat capacity (32).
Our first principles predictions of the optical reflectivity

agree well with experimental measurements although exper-
imental uncertainties are significant (Fig. 5). We find that
HSE06 predicts smaller values of the reflectivity in better
agreement with experiment as compared with PBEsol . The
smaller value of the HSE06 reflectivity is expected: HSE06
predicts band gaps in crystalline polymorphs of SiO

2

that are
in excellent agreement with experiment and much larger than
those predicted by PBEsol (≥ 50 %), apparently overcoming
the well known tendency of many functionals to seriously un-
derpredict the band gap (33). In this context, the di�erence
between our HSE06 and PBEsol results is perhaps surprisingly
small, amounting to less than 0.02. However, it is important to
remember that while di�erent functionals are often compared
in terms of the predicted band gap, our system has no gap,
and arguments based on the behavior of functionals in wide
gap systems may not apply to the liquid. We believe that
the absence of a gap in our system mutes the e�ects of exact
exchange, reducing the di�erence between HSE06 and PBEsol.
We have not considered explicit temperature dependence of
the exchange-correlation functional in our calculations as a
recent investigation shows these e�ects to be small, amounting
to 10 % in the value of ‡ (34).

Our results indicate that the magnetic field in the early
Earth could have been generated by a silicate dynamo. From
our results (Fig. 1), we find an interpolated value of the
electrical conductivity ‡ = 5700 S m≠1 at 100 GPa and 5000
K. For a 10 Earth mass super Earth, we find an even higher
value: ‡ = 125, 500 S m≠1 at 1000 GPa and 13,000 K. While
these values of ‡ are sub-metallic, they exceed the minimum
value required in magma ocean dynamo models (7) and those
of planetary dynamos in our solar system: the conductivity
of the dynamo generating regions of Neptune and Uranus
is thought to be 2000 S m≠1 (35). Our predicted values
for pure silica may underestimate the conductivity of the
magma ocean: additional components, particularly FeO and
CaO may increase the conductivity. Further, it is known
that MgO and MgSiO

3

become optically reflective along the
Hugoniot at conditions similar to those at the base of a super-
Earth magma ocean (11, 36). We look forward to a broader
class of magnetohydrodynamic simulations of the ancient field
to include the possibility of an early silicate dynamo. The
analysis of our results in terms of the Mott-Ziman theory
provides a framework for understanding optical, electrical, and
thermodynamic properties in these systems, as well as other
liquids that may be accessibe to experimental investigation at
extreme conditions.

Materials and Methods

Our molecular dynamics simulations are based on density func-
tional theory in the PBEsol (37) approximation, using the projector
augmented wave (PAW) method (38), as implemented in the VASP
code (39). Born-Oppenheimer simulations are performed in the
canonical ensemble using the Nosé-Hoover thermostat with 96 atoms
and run for 10-15 ps with 1 fs time step. We assume thermal equi-
librium between ions and electrons via the Mermin functional (40).
Sampling the Brillouin zone at the Gamma point and a basis-set
energy cuto� of 500 eV were found to be su�cient to converge energy
and pressure to within within 2 meV/atom and 0.2 GPa, respectively.
For comparison, we also performed ab initio simulations of neon
with the same settings. In addition to standard thermodynamic
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quantities, we also compute the isochoric heat capacity

C

V

(V, T ) = C

ion

V

(V, T ) + C

el

V

(V, T ) [3]

with the ionic contribution given by the fluctuation formula (41)

C

ion

V

= È�EÍ2

k

B

T

2

[4]

where È�EÍ2 is the mean squared fluctuation in the internal en-
ergy, and the electronic contribution C

el

V

by an accurate fit to the
electronic entropy versus temperature using a generalization of the
functional form used in our previous studies (30) (Fig. S6 and
Supporting Information).

We compute the electrical conductivity via the Kubo-Greenwood
formula (42) and the dielectric constant using the Random Phase
Approximation (43) as implemented in VASP from a series of at
least 10 uncorrelated snapshots at each volume-temperature condi-
tion. We perform dielectric constant calculations in both PBEsol
and HSE06 (18). We found that a 3x3x3 k-point mesh and 2000
electronic bands were su�cient to yield converged results. We also
compared with the results of a larger system (144 atoms) and found
no significant di�erences to electronic density of states, electrical
conductivity, or dielectric constant. We compute the electronic
density of states (DOS) by averaging over at least 20 snapshots well
separated in time from the MD trajectories. We sample the Brillouin
zone on a 3 ◊ 3 ◊ 3 mesh, and use the Fermi-Dirac distribution with
temperature equal to the ionic temperature to smooth the DOS.
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Supporting Information (SI)
Electronic DOS. We compute the electronic density of states by
averaging over at least 20 uncorrelated snapshots from our MD
trajectories (Fig. S1). We sample the Brillouin zone with k-point
meshes up to 5 ◊ 5 ◊ 5 k- points, although convergence is usually
achieved for a 3 ◊ 3 ◊ 3 mesh. We use the Fermi-Dirac distribution
with temperature equal to the ionic temperature to smooth the
DOS.

Ab initio Electrical Conductivity. For PBEsol calculations, we com-
pute the static (DC) electrical conductivity from ab initio wave-
functions using the Kubo-Greenwood formalism as implemented
in VASP (42) (Fig. S2). Assuming isotropy, the elements of the
conductivty tensor satisfy the relations ‡

–—

= ‡”

–—

where ”

–—

is
the Kroenecker delta. The frequency dependent conductivity is

‡(Ê) = 2fie

2~2

3m

2
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ÿ

˛
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ÿ

ij

[f(‘
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˛
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j

,

˛
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◊ |ÈÂ
i,

˛

k

|Ò|Â
j,

˛

k

Í|2”(‘
i

≠ ‘

j

≠ ~Ê) [5]

where the sums are over the Brillouin zone and pairs of states,
respectively, f is the Fermi occupation, Â is the wavefunction, ‘

is the eigenvalue, Ê is the frequency, and � is the volume of the
simulation cell.

In our computations, the ” function is replaced by a Gaussian of
width � given by the average spacing between eigenvalues weighted
by the corresponding change in the Fermi function (44). As the
behavior of Eq. 5 becomes unphysical for ~Ê < �, we find the DC
conductivity by linearly extrapolating to zero frequency.

Ab initio Optical Properties. We compute the complex dielectric con-
stant ‘ via the random phase approximation (RPA) as implemented
in VASP (43). The reflectivity is (45)

r(Ê) = [n
0

(Ê) ≠ n(Ê)]2 + [k
0

(Ê) ≠ k(Ê)]2

[n
0

(Ê) + n(Ê)]2 + [k
0

(Ê) + k(Ê)]2
[6]

where n = Re(Ÿ), k = Im(Ÿ), Ÿ =
Ô

‘ and subscript 0 indicates the
values of the unshocked material. We use established values (46)
n

0

(Ê

x

) = 1.461 for fused silica, and n

0

(Ê

x

) = 1.546 for quartz at
ambient conditions and the frequency of the experimental probe
Ê

x

=532 nm (2.33 eV); k

0

(Ê
x

) = 0 for both phases.
For HSE calculations, we compute the electrical conductivity

from the dielectric constant (Fig. S2)

‡(Ê) = ÊIm(‘) [7]

We have found that the frequency dependence of the conductivity
can be represented by a Drude form plus a Lorentz peak

‡(Ê) = AÊ

2

/((B ≠ Ê

2)2 ≠ CÊ

2) + ‡(0)/(1 + Ê

2

·

2) [8]

which then yields the DC conductivity ‡(0) as a parameter of the
fit.

Structure Factor. Figure S3 shows our results for the total structure
factor. In order to evaluate the suitability of the nearly free electron
picture, we compare the form of the structure factor to that of
the electronic density of states. In this limit, the gap appears at
the energy W ¥ ~2

/(2m)(q
P

/2)2 above the bottom of the valence
band (24), where q

P

is the position of the first peak in the structure
factor. For example, at 7.33 g cm≠3 and 10,000 K the first peak in
the structure factor is located at q

P

= 4.3 Å≠1 (Fig. S3), yielding
W = 18 eV, in reasonable agreement with the position of the
pseudo-gap in our simulations (Fig. S1).

We further illustrate the structure of the liquid via the partial
radial distribution functions (Fig. S4) and a snapshot from the
simulation at 7.33 g cm≠3 and 50,000 K (Fig. S5).

Mott-Ziman Formalism. The electrical conductivity in the Mott-
Ziman theory is given by

‡

≠1

MZ

= a

0

h

g

22e

2

k

2

T F

64fiZE

2

F

2kF⁄

0

q

3

S(q)u(q)2

dq [9]

where S(q) is the structure factor from our simulations, k

F

and k

T F

are the Fermi and Thomas-Fermi wave vectors, respectively, E

F

is
the Fermi energy, the conductivity quantum 2e

2

/ha

0

= 1.464 ◊ 106

S m≠1 , and we have assumed an unscreened pseudopotential
u(q) = ≠4fiZe

2

/q

2 with Z = 4 for Si and for O. We note that,
in general, for a binary system, the total structure factor must be
replaced by (47)

S(q)u(q)2 æS

22

(q)u
2

(q)2 + (1 ≠ x)S
11

(q)u
1

(q)2

+ 2[x(1 ≠ x)]1/2

S

12

(q)u
1

(q)u
2

(q) [10]
Where S

ab

are the Ahscroft-Langreth partial structure factors, u

a

is the pseudopotential of component a and x is the concentration
of species 2. In our case the e�ective valences of both species are
taken to be equal (Z=4) corresponding to Be and Ne cores for O
and Si, respectively. Therefore the unscreened pseudopotentials
u

1

= u

2

= u, and these terms can be factored out: the combined
contribution of the partial structure factors is just the total structure
factor and the right hand side of Eq. 10 reduces to S(q)u2(q).

Our Mott-Ziman results are shown as dashed lines in Fig. 1 of
the main text. For comparison, we show our Ziman results (g = 1)
in Fig. S6.

Hugoniot. We compute the ab initio Hugoniot (Fig. S7) from:

E(V, T ) ≠ E

0

= 1
2

[P (V, T ) + P

0

](V
0

≠ V ) [11]

where E

0

, P

0

, V

0

are the energy, pressure and volume of the initial
unshocked state. We compute with VASP E

0

and V

0

at P

0

= 0
for initial unshocked states: quartz and fused silica. The latter is
obtained by quenching our MD simulations at fl = 2.20 g cm≠3.
Solutions to Eq. 11 are found via interpolation of our MD results
(48).

Heat Capacity. Under the assumption of thermal equilibrium between
ions and electrons the total heat capacity

C

V

(V, T ) = C

ion

V

(V, T ) + C

el

V

(V, T ) [12]
We compute the ionic contribution via the fluctuation formula (41)

C

ion

V

= È�EÍ2

k

B

T

2

[13]

where È�EÍ2 is the mean squared fluctuation in the internal energy.
Our results for the electronic contribution to the heat capacity

at all volumes and temperatures are summarized in Figure S8. We
obtain the electronic contribution from the electronic entropy, which
we have found is well represented by

S

el(V, T ) = ⁄(V )[ln(T/T

0

)]2 [14]
yielding

C

el

V

= ⁄(V ) ln(T/T

0

) [15]
In Figure S8 we show an example of the fit obtained. The functional
form is a generalization of that used in our previous work over a
more limited range of temperature (30).

In Figure S9 we show the temperature dependence of the total
heat capacity C

V

calculated at di�erent volumes for liquid SiO
2

.
We find a local maximum at temperatures 6000 K < T < 10,000 K
for all volumes. At higher temperature, the electrical contribution
dominates and the heat capacity increases monotonically on heating.

The method we have used for computing the heat capacity has
the advantage that variations of C

V

with temperature are more
robustly recovered. The heat capacity may also be computed via
finite di�erence

C̄

V

(T̄ ) = E(T
2

) ≠ E(T
1

)
T

2

≠ T

1

[16]

where the overbars indicate mean values. We demonstrate that our
values of the heat capacity are consistent with values computed via
Eq. 16 in Figure S9.
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Fig. S1. Electronic DOS for different densities and temperatures. The continuous
blue line is the free-electron DOS.

Fig. S2. Comparison of electrical conductivity computed from the Kubo-Greenwood
method at fl=7.33 g cm≠3 and T =10,000 K (green), fl=7.33 g cm≠3 and T =20,000 K
(orange), and fl=3.67 g cm≠3 and T =10,000 K (black). Also shown is the conductivity
computed from the dielectric constant at fl=7.33 g cm≠3 and T =10,000 K in PBEsol
(short dashed) and HSE06 (lond-dashed).

Fig. S3. Total structure factor for SiO2 at different densities and temperatures. The
dashed black lines indicate the upper limit of the Ziman integral (2kF ).

Fig. S4. Total radial distribution function of SiO2 (green) and the partial radial
distribution functions O-Si (solid red), O-O (dashed red) Si-Si (small dashed red) at
10,000 K and the density indicated and (inset) at fl=7.33 g cm≠3 and 50,000 K.

Fig. S5. Snapshot from the simulation at fl=7.33 g cm≠3 and 50,000 K showing
(blue) Si and (red) O atoms and distances nearer than 2.0 Å shown as bonds. We
note that the choice of distance cutoff is somewhat arbitrary as the first coordination
shell is not well defined at these conditions as is evident from the radial distribution
function (Fig. S4). Our choice emphasizes the similar number of O-O to O-Si nearest
nieghbors and thus the breakdown of charge ordering.

Fig. S6. Ab initio electrical conductivity computed with PBEsol (full lines and closed
symbols) and with HSE06 (open symbols) compared with the Ziman formula (g = 1,
dashed lines).

Fig. S7. Principle Hugoniots of fused silica (red) and quartz (blue) as computed from
our first principles simulations (lines) and measured experimentally (symbols) (10).

Fig. S8. Electronic heat capacity as a function of temperature at various densities
from our simulations. (Inset) Electronic entropy from our simulations at fl=7.33 g
cm≠3 (symbols) and the fit to these results (Eq. 14).

Fig. S9. Total heat capacity as a function of temperature at various densities from
our simulations. (Inset) Comparison of the total heat capacity computed with the
fluctuation formula (Eq. 13) and the electronic entropy (Eqs. 15) at T =8000 K (blue)
and T =10,000 K (red) to that computed via finite difference (Eq. 16) with T1=8000 K
and T2=10,000 K (grey).
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