154 research outputs found
On the Complexity of Case-Based Planning
We analyze the computational complexity of problems related to case-based
planning: planning when a plan for a similar instance is known, and planning
from a library of plans. We prove that planning from a single case has the same
complexity than generative planning (i.e., planning "from scratch"); using an
extended definition of cases, complexity is reduced if the domain stored in the
case is similar to the one to search plans for. Planning from a library of
cases is shown to have the same complexity. In both cases, the complexity of
planning remains, in the worst case, PSPACE-complete
The future of Cybersecurity in Italy: Strategic focus area
This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management
Promptness and Bounded Fairness in Concurrent and Parameterized Systems
We investigate the satisfaction of specifications in Prompt
Linear Temporal Logic (Prompt-LTL) by concurrent systems. Prompt-LTL is an extension of LTL that allows to specify parametric bounds onthe satisfaction of eventualities, thus adding a quantitative aspect to the specification language. We establish a connection between bounded fairness, bounded stutter equivalence, and the satisfaction of Prompt-LTL\X
formulas. Based on this connection, we prove the first cutoff results for different classes of systems with a parametric number of components and quantitative specifications, thereby identifying previously unknown
decidable fragments of the parameterized model checking problem
Hybrid Architecture for a Reasoning Planner Agent
This paper presents a hybrid architecture that facilitates the incur-poration of a case-based planning system as the reasoning motor for a deliberative agent. This architecture makes possible to solve a wide range of problems in terms of agents and multi-agent systems. The problems are resolved in terms of plans, using plans that have already been experienced
Small Oscillatory Accelerations, Independent of Matrix Deformations, Increase Osteoblast Activity and Enhance Bone Morphology
A range of tissues have the capacity to adapt to mechanical challenges, an attribute presumed to be regulated through deformation of the cell and/or surrounding matrix. In contrast, it is shown here that extremely small oscillatory accelerations, applied as unconstrained motion and inducing negligible deformation, serve as an anabolic stimulus to osteoblasts in vivo. Habitual background loading was removed from the tibiae of 18 female adult mice by hindlimb-unloading. For 20 min/d, 5 d/wk, the left tibia of each mouse was subjected to oscillatory 0.6 g accelerations at 45 Hz while the right tibia served as control. Sham-loaded (n = 9) and normal age-matched control (n = 18) mice provided additional comparisons. Oscillatory accelerations, applied in the absence of weight bearing, resulted in 70% greater bone formation rates in the trabeculae of the metaphysis, but similar levels of bone resorption, when compared to contralateral controls. Quantity and quality of trabecular bone also improved as a result of the acceleration stimulus, as evidenced by a significantly greater bone volume fraction (17%) and connectivity density (33%), and significantly smaller trabecular spacing (−6%) and structural model index (−11%). These in vivo data indicate that mechanosensory elements of resident bone cell populations can perceive and respond to acceleratory signals, and point to an efficient means of introducing intense physical signals into a biologic system without putting the matrix at risk of overloading. In retrospect, acceleration, as opposed to direct mechanical distortion, represents a more generic and safe, and perhaps more fundamental means of transducing physical challenges to the cells and tissues of an organism
Two-Photon Microscopy for Non-Invasive, Quantitative Monitoring of Stem Cell Differentiation
BACKGROUND: The engineering of functional tissues is a complex multi-stage process, the success of which depends on the careful control of culture conditions and ultimately tissue maturation. To enable the efficient optimization of tissue development protocols, techniques suitable for monitoring the effects of added stimuli and induced tissue changes are needed. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present the quantitative use of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) as a noninvasive means to monitor the differentiation of human mesenchymal stem cells (hMSCs) using entirely endogenous sources of contrast. We demonstrate that the individual fluorescence contribution from the intrinsic cellular fluorophores NAD(P)H, flavoproteins and lipofuscin can be extracted from TPEF images and monitored dynamically from the same cell population over time. Using the redox ratio, calculated from the contributions of NAD(P)H and flavoproteins, we identify distinct patterns in the evolution of the metabolic activity of hMSCs maintained in either propagation, osteogenic or adipogenic differentiation media. The differentiation of these cells is mirrored by changes in cell morphology apparent in high resolution TPEF images and by the detection of collagen production via SHG imaging. Finally, we find dramatic increases in lipofuscin levels in hMSCs maintained at 20% oxygen vs. those in 5% oxygen, establishing the use of this chromophore as a potential biomarker for oxidative stress. CONCLUSIONS/SIGNIFICANCE: In this study we demonstrate that it is possible to monitor the metabolic activity, morphology, ECM production and oxidative stress of hMSCs in a non-invasive manner. This is accomplished using generally available multiphoton microscopy equipment and simple data analysis techniques, such that the method can widely adopted by laboratories with a diversity of comparable equipment. This method therefore represents a powerful tool, which enables researchers to monitor engineered tissues and optimize culture conditions in a near real time manner
Osteointegration of soft tissue grafts within the bone tunnels in anterior cruciate ligament reconstruction can be enhanced
Anterior cruciate ligament reconstruction with a soft tissue autograft (hamstring autograft) has grown in popularity in the last 10 years. However, the issues of a relatively long healing time and an inferior histological healing result in terms of Sharpey-like fibers connection in soft tissue grafts are still unsolved. To obtain a promising outcome in the long run, prompt osteointegration of the tendon graft within the bone tunnel is essential. In recent decades, numerous methods have been reported to enhance osteointegration of soft tissue graft in the bone tunnel. In this article, we review the current literature in this research area, mainly focusing on strategies applied to the local bone tunnel environment. Biological strategies such as stem cell and gene transfer technology, as well as the local application of specific growth factors have been reported to yield exciting results. The use of biological bone substitute and physical stimulation also obtained promising results. Artificially engineered tissue has promise as a solution to the problem of donor site morbidity. Despite these encouraging results, the current available evidence is still experimental. Further clinical studies in terms of randomized control trial in the future should be conducted to extrapolate these basic science study findings into clinical practice. © 2009 Springer-Verlag.postprin
Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs
Tendon and ligaments have poor healing capacity and when injured often require surgical intervention. Tissue replacement via autografts and allografts are non-ideal strategies that can lead to future problems. As an alternative, scaffold-based tissue engineering strategies are being pursued. In this review, we describe design considerations and major recent advancements of scaffolds for tendon/ligament engineering. Specifically, we outline native tendon/ligament characteristics critical for design parameters and outcome measures, and introduce synthetic and naturally-derived biomaterials used in tendon/ligament scaffolds. We will describe applications of these biomaterials in advanced tendon/ligament engineering strategies including the utility of scaffold functionalization, cyclic strain, growth factors, and interface considerations. The goal of this review is to compile and interpret the important findings of recent tendon/ligament engineering research in an effort towards the advancement of regenerative strategies
An Architecture for Planning in Embedded Systems
Marzo/Aprile, Kluwer Academic Publisher, Dordrecht, The Netherland
- …