70 research outputs found

    Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Get PDF
    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans

    Bone histology provides insights into the life history mechanisms underlying dwarfing in hipparionins

    Get PDF
    Size shifts may be a by-product of alterations in life history traits driven by natural selection. Although this approach has been proposed for islands, it has not yet been explored in continental faunas. The trends towards size decrease experienced by some hipparionins constitute a good case study for the application of a life history framework to understand the size shifts on the continent. Here, we analysed bone microstructure to reconstruct the growth of some different-sized hipparionins from Greece and Spain. The two dwarfed lineages studied show different growth strategies. The Greek hipparions ceased growth early at a small size thus advancing maturity, whilst the slower-growing Spanish hipparion matured later at a small size. Based on predictive life history models, we suggest that high adult mortality was the likely selective force behind early maturity and associated size decrease in the Greek lineage. Conversely, we infer that resource limitation accompanied by high juvenile mortality triggered decrease in growth rate and a relative late maturity in the Spanish lineage. Our results provide evidence that different selective pressures can precipitate different changes in life history that lead to similar size shifts

    Stability of the Spine

    No full text

    Reindeer turning maritime:ice‐locked tundra triggers changes in dietary niche utilization

    No full text
    Abstract The rapid warming of the Arctic may not only alter species’ abundances and distributions, but likely also the trophic interactions within and between ecosystems. On the high‐arctic tundra, extreme warm spells and associated rain‐on‐snow events in winter can encapsulate the vegetation entirely in ground‐ice (i.e., basal ice) and directly or indirectly affect plants, herbivores, and carnivores. However, the implications of such extreme events for trophic interactions and food‐web ecology are generally far from understood. Here, we show that wild Svalbard reindeer populations increasingly isolated by lack of sea‐ice respond to rain‐on‐snow and ice‐locked pastures by increased kelp consumption. Based on annual population surveys in late winters 2006–2015, the proportion of individual reindeer feeding along the shoreline increased the icier the winter. Stable isotope values (Ύ³⁎S, ÎŽÂčÂłC, ÎŽÂč⁔N) of plants, washed‐ashore kelp, and fresh reindeer feces collected along coast‐inland gradients, confirmed ingestion of marine biomass by the reindeer in the shoreline habitat. Thus, even on remote islands and peninsulas increasingly isolated by sea‐ice loss, effects of climate change may be buffered in part by behavioral plasticity and increased use of resource subsidies. This marine dimension of a terrestrial herbivore’s realized foraging niche adds to evidence that global warming significantly alters trophic interactions as well as meta‐ecosystem processes
    • 

    corecore