864 research outputs found

    Islanding, growth mode and ordering in Si heteroepitaxy on Ge(001) substrates structured by thermal annealing

    Full text link
    Si/Ge heteroepitaxial dots under tensile strain are grown on nanostructured Ge substrates produced by high-temperature flash heating exploiting the spontaneous faceting of the Ge(001) surface close to the onset of surface melting. A very diverse growth mode is obtained depending on the specific atomic structure and step density of nearby surface domains with different vicinal crystallographic orientations. On highly-miscut areas of the Ge(001) substrate, the critical thickness for islanding is lowered to about 5 ML, in contrast to the 11 ML reported for the flat Ge(001) surface, while on unreconstructed (1x1) domains the growth is Volmer-Weber driven. An explanation is proposed considering the diverse relative contributions of step and surface energies on misoriented substrates. In addition, we show that the bottom-up pattern of the substrate naturally formed by thermal annealing determines a spatial correlation for the dot sites

    Cu-catalyzed Si-NWS grown on “carbon paper” as anodes for Li-ion cells

    Get PDF
    The very high theoretical capacity of the silicon (4200mAh/g more than 10 times larger than graphite), environmental-friendly, abundant and low-cost, makes it a potential candidate to replace graphite in high energy density Li-ion batteries. As a drawback, silicon suffers from huge volume changes (300%) on alloying and dealloying with Li, leading a structural deformation that induces disruption. The use of nanostructured silicon materials has been shown to be an effective way to avoid this mechanical degradation of the active material. In this paper the synthesis of silicon nanowires, grown on a highly porous 3D-like carbon paper substrate by CVD using Cu as the catalyst, is presented. The use of carbon paper allows to achieve remarkable loadings of active material (2-5 mg/cm2) and, consequently, high capacity densities. The silicon electrode was investigated both morphologically and electrochemically. To improve the electrochemical performance various strategies have been carried out. It was observed that a very slow first cycle (C/40), which helps the formation of a stable solid electrolyte interphase on the silicon surface, improves the performance of the cells; nevertheless, their cycle life has been found not fully satisfactory. Morphological analysis of the Si-NWs electrodes before and after cycling showed the presence of a dense silicon layer below the nanowires which could reduce the electrical contact between the active material and the substrate

    Bell's palsy: Symptoms preceding and accompanying the facial paresis

    Get PDF
    This individual prospective cohort study aims to report and analyze the symptoms preceding and accompanying the facial paresis in Bell's palsy (BP). Two hundred sixty-nine patients affected by BP with a maximum delay of 48 hours from the onset were enrolled in the study. The evolution of the facial paresis expressed as House-Brackmann grade in the first 10 days and its correlation with symptoms were analyzed. At the onset, 136 patients presented postauricular pain, 114 were affected by dry eye, and 94 reported dysgeusia. Dry mouth was present in 54 patients (19.7%), facial pain, hyperlacrimation, aural fullness, and hyperacusis represented a smaller percentage of the reported symptoms. After 10 days, 39.9% of the group had a severe paresis while 10.2% reached a complete recovery. Dry mouth at the onset was correlated with severe grade of palsy and was prognostic for poor recovery in the early period. These outcomes lead to the deduction that the nervus intermedius plays an important role in the presentation of the BP and it might be responsible for most of the accompanying symptomatology of the paresis. Our findings could be of important interest to early address a BP patient to further examinations and subsequent therapy

    Vascular smooth muscle Sirtuin-1 protects against aortic dissection during Angiotensin II-induced hypertension

    Get PDF
    BACKGROUND: Sirtuin-1 (SirT1), a nicotinamide adenine dinucleotide(+)-dependent deacetylase, is a key enzyme in the cellular response to metabolic, inflammatory, and oxidative stresses; however, the role of endogenous SirT1 in the vasculature has not been fully elucidated. Our goal was to evaluate the role of vascular smooth muscle SirT1 in the physiological response of the aortic wall to angiotensin II, a potent hypertrophic, oxidant, and inflammatory stimulus. METHODS AND RESULTS: Mice lacking SirT1 in vascular smooth muscle (ie, smooth muscle SirT1 knockout) had drastically high mortality (70%) caused by aortic dissection after angiotensin II infusion (1 mg/kg per day) but not after an equipotent dose of norepinephrine, despite comparable blood pressure increases. Smooth muscle SirT1 knockout mice did not show any abnormal aortic morphology or blood pressure compared with wild-type littermates. Nonetheless, in response to angiotensin II, aortas from smooth muscle SirT1 knockout mice had severely disorganized elastic lamellae with frequent elastin breaks, increased oxidant production, and aortic stiffness compared with angiotensin II-treated wild-type mice. Matrix metalloproteinase expression and activity were increased in the aortas of angiotensin II-treated smooth muscle SirT1 knockout mice and were prevented in mice overexpressing SirT1 in vascular smooth muscle or with use of the oxidant scavenger tempol. CONCLUSIONS: Endogenous SirT1 in aortic smooth muscle is required to maintain the structural integrity of the aortic wall in response to oxidant and inflammatory stimuli, at least in part, by suppressing oxidant-induced matrix metalloproteinase activity. SirT1 activators could potentially be a novel therapeutic approach to prevent aortic dissection and rupture in patients at risk, such as those with hypertension or genetic disorders, such as Marfan's syndrome.R01 HL098028 - NHLBI NIH HHS; HL098028 - NHLBI NIH HHS; HL105287 - NHLBI NIH HHS; T32 HL07224 - NHLBI NIH HH

    Disentangling elastic and inelastic scattering pathways in the intersubband electron dynamics of n -type Ge/SiGe quantum fountains

    Get PDF
    n-type Ge/SiGe quantum wells have been suggested as a promising platform for the realization of a Si-compatible THz laser. Focusing on this material system, we have developed a numerical model to describe the intersubband carrier dynamics which restores the equilibrium after pulsed optical excitation in asymmetric coupled Ge/SiGe quantum wells. We take into account inelastic and elastic scattering processes and investigate different quantum-well geometries, doping densities, and excitation regimes. In this configuration space, we disentangle the effect on the overall dynamics of each scattering channel and provide intersubband relaxation times, finding larger values with respect to III-V based materials, thanks to the weaker electron-phonon coupling with respect to III-V compounds. Finally, the model is used to study and optimize the population inversion between the first- and second-excited subband levels and to assess its dependence on the lattice temperature, providing a sound theoretical framework to guide forthcoming experiments

    Landslide susceptibility assessment in the Upper Orcia Valley (Southern Tuscany, Italy) through conditional analysis: a contribution to the unbiased selection of causal factors

    Get PDF
    Abstract. In this work the conditional multivariate analysis was applied to evaluate landslide susceptibility in the Upper Orcia River Basin (Tuscany, Italy), where widespread denudation processes and agricultural practices have a mutual impact. We introduced an unbiased procedure for causal factor selection based on some intuitive statistical indices. This procedure is aimed at detecting among different potential factors the most discriminant ones in a given study area. Moreover, this step avoids generating too small and statistically insignificant spatial units by intersecting the factor maps. Finally, a validation procedure was applied based on the partition of the landslide inventory from multi-temporal aerial photo interpretation. Although encompassing some sources of uncertainties, the applied susceptibility assessment method provided a satisfactory and unbiased prediction for the Upper Orcia Valley. The results confirmed the efficiency of the selection procedure, as an unbiased step of the landslide susceptibility evaluation. Furthermore, we achieved the purpose of presenting a conceptually simple but, at the same time, effective statistical procedure for susceptibility analysis to be used as well by decision makers in land management
    • …
    corecore