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Abstract. In this work the conditional multivariate analysis
was applied to evaluate landslide susceptibility in the Up-
per Orcia River Basin (Tuscany, Italy), where widespread
denudation processes and agricultural practices have a mu-
tual impact. We introduced an unbiased procedure for causal
factor selection based on some intuitive statistical indices.
This procedure is aimed at detecting among different poten-
tial factors the most discriminant ones in a given study area.
Moreover, this step avoids generating too small and statis-
tically insignificant spatial units by intersecting the factor
maps. Finally, a validation procedure was applied based on
the partition of the landslide inventory from multi-temporal
aerial photo interpretation.

Although encompassing some sources of uncertainties, the
applied susceptibility assessment method provided a satisfac-
tory and unbiased prediction for the Upper Orcia Valley. The
results confirmed the efficiency of the selection procedure,
as an unbiased step of the landslide susceptibility evaluation.
Furthermore, we achieved the purpose of presenting a con-
ceptually simple but, at the same time, effective statistical
procedure for susceptibility analysis to be used as well by
decision makers in land management.

1 Introduction

Landslide hazard prediction can be difficult because it is of-
ten impossible to evaluate the spatial and temporal distribu-
tion of past events for large areas, due to gaps in the histori-
cal record and limited geographic information. Thus, several
methods developed and implemented in this field of research
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have focused on evaluating landslide susceptibility (see the
reviews by: Brabb, 1984; Crozier, 1984; Carrara et al., 1995;
Soeters and van Westen, 1996; Guzzetti et al., 1999). Land-
slide susceptibility methods are generally based on the state-
ment that landslides are more likely to occur in the presence
of the same conditions that led to past and present instability
(Varnes, 1984; Carrara et al., 1991, 1995; Marini, 1995). For
this reason, most of the landslide susceptibility evaluation
methods are generally focused on the study of the factors in-
fluencing slope instability (causal factors).

Landslide susceptibility methods can be divided into three
classes (Carrara et al., 1992): heuristic, deterministic, and
statistical methods. In heuristic (or index) methods, the
causal factors are weighted subjectively (Hollingsworth and
Kovacs, 1981; Bosi et al., 1985; Neeley and Rice, 1990;
Montgomery et al., 1991; van Westen et al., 1999). De-
terministic models are based on the physical laws driving
landslides (Okimura and Kawatani, 1987; Hammond et al.,
1992; Montgomery and Dietrich, 1994; Terlien et al., 1995;
Pack et al., 1999; Iverson, 2000) and are generally more
suitable for small areas or for slope-specific stability stud-
ies. The statistical approach, instead, is founded on the mul-
tivariate relationships between causal factors and past and
present landslide occurrence. The multivariate relationships
are often identified through conditional analysis (Bonham-
Carter et al., 1989; Carrara et al., 1995), discriminant anal-
ysis (Agterberg, 1974; Carrara, 1983; Carrara et al., 1995,
2003; Baeza and Corominas, 2001), linear or logistic regres-
sion (Atkinson and Massari, 1998; Guzzetti et al., 1999, and
references therein; Gorsevski et al., 2000; Dai and Lee, 2003;
Ohlmacher and Davis, 2003; Ayalew and Yamagishi, 2005),
and artificial neural networks (Aleotti et al., 1996; Lee et al.,
2001; Wang and Sassa, 2006; Falaschi et al., 2009; Pradhan
and Lee, 2010).
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Statistical models have been developed to overcome the
uncertainty due to subjective evaluation and are generally
suitable for susceptibility assessment at catchment scale (as
the present study case). In the statistical approach, particu-
larly when applying conditional analysis, the causal factors
are generally selected by the operator (Zêzere et al., 2005;
Clerici et al., 2006; Conoscenti et al., 2008).

This work is aimed at assessing landslide susceptibility
for the Upper Orcia River Basin, through the integration of
the conditional analysis with an unbiased bivariate statistical
procedure for selecting causal factors. Since the final pur-
pose of the susceptibility analysis is to guide decision mak-
ers in land management, we propose a conceptually simple
statistical methodology.

2 Susceptibility assessment method

2.1 Methodological background

The applied landslide susceptibility assessment procedure
(Fig. 1) is part of a well-established group of statistical mod-
els. It is based on a method originally proposed in previous
studies (Marini, 1995; Del Monte et al., 2002; Della Seta
et al., 2005) and consisting of a multivariate analysis, where
the conditional independence among causal factors had been
assumed. In this study, the conditional dependence among
factors is assumed and the susceptibility analysis is preceded
by a new statistical procedure to select the most important
causal factors for each type of landslide.

Separate analyses were performed for different landslide
types as also suggested by Soeters and van Westen (1996),
Guzzetti et al. (1999), Remondo et al. (2003). In fact, the
most influential factors and their weights may vary consid-
erably for different landslide types as well as, for the same
type, in different areas. For the assessment of landslide sus-
ceptibility of the Upper Orcia Valley, we considered the most
frequent landslide types in the area: mud flows, earth slumps,
complex landslides, and portions of hillslopes affected by so-
lifluction and very small mud flows, as described in detail in
the following paragraphs.

The proposed procedure for factor selection is a bivariate
statistical analysis aimed at understanding the distribution of
the occurred landslides within the different classes of possi-
ble controlling factors. The selection of the causal factor, in
fact, is based on the concept that the more the past events
are concentrated in few classes of a factor, the more this fac-
tor will be important in discriminating the areas more or less
prone to the future occurrence of that landslide type.

In this method, the study area was subdivided into sub-
areas characterized by a unique combination of classes of
pre-selected factors (Marini, 1995; Del Monte et al., 2002).
These map units conceptually correspond to the Unique Con-
dition Units (UCU, Carrara et al., 1995; Chung et al., 1995),
but formally differ from them because in this study they come
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Figure 1: Landslide susceptibility assessment procedure. 2 
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Fig. 1. Landslide susceptibility assessment procedure.

from vector datasets so that we called them vUCUs (vector
Unique Condition Units). Moreover, the vUCUs are differ-
ent for each landslide type susceptibility analysis, as a con-
sequence of the application of the factor selection procedure.
Vector datasets were used in order to obtain vector suscepti-
bility outputs, which are expected to be less fragmented than
the raster ones, and consequently more easy to be interpreted
by users.

The conditional analysis is a multivariate statistical ap-
proach based on Bayesian theory, which considers the causal
factors as conditionally dependent causes for landslide events
(Bonham-Carter et al., 1989; Carrara et al., 1995). This sta-
tistical procedure is generally applied to calculate thesus-
ceptibility indexfor each map unit, where the simple attri-
bution of an a priori landslide probability determination is
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conditioned, and thus updated, considering information on
the combination of selected factors that caused past events.

A well-structured susceptibility evaluation procedure
should consider the terrain conditions preceding the land-
slide events, since the failure occurrence could cause strong
topographic modifications of these areas (Chung and Fabbri,
1999, 2008; Fernandez et al., 2003; Ayalew and Yamagishi,
2005; Nefeslioglu et al., 2008; Clerici et al., 2010). To test
the best feature to be used for each landslide type, our pro-
cedure provides for the application of the susceptibility anal-
ysis using, for landslide inventory, the depletion zones and
the outer buffer areas from the depletion zones, the latter to
be dimensioned as a function of the input data resolution.
In fact, the outer buffer area from depletion zones preserves
pre-landslide conditions (S̈uzen and Doyuran, 2004), and it
can also be affected by retrogressive activity of the landside
process (Cruden and Varnes, 1996): it is, thus, very useful
when input data about the terrain conditions preceding the
instability events are not available.

We performed a validation, considering the importance
of verifying the reliability of the spatial prediction model
(Guzzetti et al., 2006). Several validation procedures have
been proposed by different authors, with the aim of immedi-
ately testing the model, overcoming the difficulty of waiting
for future landslides and comparing their distribution with
the assessed classes of susceptibility. In this study, the valida-
tion procedure proposed by Chung and Fabbri (2003) was ap-
plied, in which a temporal subdivision of landslides is recom-
mended: atraining subsetof data was exploited to produce a
new prediction map (training susceptibility map), while the
other subset (test subset) simulated the unknowntarget pat-
tern, as better explained in the following paragraphs.

2.2 Factor selection procedure

The implementation of landslide susceptibility prediction
models involves a series of tricky problems to be solved when
identifying and mapping a suitable set of potential causal fac-
tors.

a. Identification and mapping of a suitable set of instability
factors, bearing a causal relationship with slope failures
needs an a priori knowledge of the main causes of land-
sliding (Guzzetti et al., 1999).

b. Once some potential causal factors have been correctly
identified, a further constraint for a successful landslide
susceptibility evaluation lies in their suitability for the
study case: in fact, each causal factor can be more or
less discriminant in explaining the distribution of the
same landslide type in different study areas.

c. The identified controlling factors must then be classi-
fied in a suitable number of classes to best represent the
variability of the factor values. In fact, too many classes
lead to excessively small and diverse vUCUs and, thus,

to low statistical significance of the landslide distribu-
tion in each vUCU, while too few classes can hide the
effective variability of data. To perform an unbiased
classification, the correct method should be chosen de-
pending on the data frequency distribution (Jenks and
Caspall, 1971).

d. Once the factor values have been correctly classified,
it is necessary to select the correct number of factors,
because, again, the greater the diversity of vUCUs, the
lower the extent of the spatial units and, in turn, the
lower the significance of the statistical analyses (Clerici
et al., 2006, 2010). However, filtering techniques to
cancel out or merge small and insignificant areas can
introduce bias or errors in the procedure (Guzzetti et
al., 1999). When using UCUs, the maximum number of
causal factors to use in the landslide susceptibility as-
sessment should depend on the extent and on the phys-
iographic variability of the study area, as well as on the
input data resolution.

Applications of simple statistical methods, such as con-
ditional analysis, are rarely preceded by an unbiased causal
factor selection procedure (He and Beighley, 2008). Some
factor selection procedures, such as those proposed by Chung
et al. (2002), Remondo et al. (2003) Clerici et al. (2010),
provide for selecting the most significant factors after having
computed all the possible susceptility maps from all the pos-
sible combinations of the potential causal factors and having
tested the results by means of a validation method.

To select the most influencing factors likely responsible
for future events in a given study area, we propose to use
some statistical parameters before the application of the con-
ditional analysis (Fig. 2), as a conceptually simple and ef-
fective method. This method is aimed at solving the above
points (b), (c), and (d), considering that point (a) is com-
mon to all the approaches aimed at evaluating geomorpho-
logical susceptibility and is strongly depending on the oper-
ator knowledge of gravitational processes.

In particular, our factor selection consists of measures of
inequality distributions (Gini, 1914), computation of Lorenz
curves (Lorenz, 1905), and use of some indices of correla-
tion between variables. Gini’s index of inequality and Lorenz
curves were conceived in the field of economics to measure
social inequality and to represent income distribution over
a population. In this study, we applied them to understand
the distribution of occurred landslides within the different
classes of influencing factors. The Lorenz curves were con-
structed after the intersection of each causal factor map with
each landslide type map. Each point on the Lorenz curve
(Fig. 2a) represents the cumulative area affected by a given
landslide type versus the cumulative portion of the study area
characterized by a certain class of a given potential causal
factor. The line of perfect inequality (dotted line in Fig. 2a)
represents the situation in which all the landslides of each

www.nat-hazards-earth-syst-sci.net/11/1475/2011/ Nat. Hazards Earth Syst. Sci., 11, 1475–1497, 2011



1478 F. Vergari et al.: Landslide susceptibility assessment in the Upper Orcia Valley

 1 

Figure 2: Factor selection procedure: a) Example of Lorenz curve representing the distribution of 2 

landslide within the different classes of a potential causal factor K; the 1:1 solid line represents the 3 

homogeneous distribution of landslides with respect to factor classes, while the dotted line 4 

represents the perfect inequality distribution. b) Factor selection based on Gini coefficient value (G) 5 

with respect to the mean of the G values of all the considered factors. b1) Factor selection if only 6 

one factor has G value above the mean. b2) Factor selection if more factors than the needed number 7 

have G value above the mean. The degree of correlation between these factors (c) has to be 8 

considered, in order to discard, from the statistically correlated ones, those with lowest G values. 9 

Fig. 2. Factor selection procedure:(a) example of Lorenz curve
representing the distribution of landslide within the different classes
of a potential causal factorK; the 1:1 solid line represents the ho-
mogeneous distribution of landslides with respect to factor classes,
while the dotted line represents the perfect inequality distribution.
(b) Factor selection based on Gini coefficient value (G) with respect
to the mean of theG-values of all the considered factors.(b1) Fac-
tor selection if only one factor hasG-value above the mean.(b2)
Factor selection if more factors than the needed number haveG-
value above the mean. The degree of correlation between these fac-
tors(c)has to be considered in order to discard, from the statistically
correlated ones, those with lowestG-values.

type are clustered in a single factor class, whereas their ho-
mogeneous distribution in all the factor classes is represented
by the line of perfect equality (the 1:1 solid line in Fig. 2a).

The Gini coefficient (G) is graphically represented by the
area between the line of perfect equality and the computed
Lorenz curve, and it is expressed as the portion of the area
between the line of perfect equality and the line of perfect
inequality (Gini, 1914). This area can be approximated with
trapezoids, and can be calculated using the following for-
mula:

G = 1−

N∑
n=1

(Xn −Xn−1)(Yn +Yn−1) (1)

where: n = factor class,N = total number of factor classes,
Xn = cumulative portion of the study area characterized by
the factor classn, with X0 = 0, XN = 1, Yn = cumulative por-
tion of landslide area falling in the factor classn, with Y0 = 0,
YN = 1.

For each landslide type analysis, a factor was selected if
the correspondingG-value was higher than the average of the
coefficient values of all of the considered factors, as shown in
Fig. 2b. The mean value is a simple measurement of the cen-
tral tendency of the data and accounts for the specific range
of G-values for each landslide type. In this way, indepen-
dently of the absoluteG-values, factors withG higher than
the mean value will be more discriminant than the others for
the same landslide type occurrence in the study area. If only
one factor has aG-value higher than the mean, then the fac-
tor with the second highestG-value must be selected as well
(case b1 in Fig. 2). If more factors than the needed num-
ber have aG-value above the mean, we propose a method
of exclusion based on the correlation between these factors,
in order to avoid that the vUCUs provide redundant infor-
mation about the landslide distribution (Clerici et al., 2010).
Thus we computed a unique correlation matrix for all the
possible pairs of potential factors usingPearson correlation
when comparing two numerical variables (such as slope and
drainage density), theCramer Indexwhen comparing two
nominal variables (such as lithology and land use), and the
η2 index when comparing a numerical variable to a nomi-
nal variable (such as lithology and amplitude of relief) (Pear-
son, 1896; Cramer, 1999). So, when too many causal fac-
tors haveG-values above the mean, from the pairs with the
relatively highest correlation value, the factor with lowestG-
value must be discarded (case b2 in Fig. 2).

The susceptibility evaluation for each landslide type was
preceded by a careful evaluation of the best factor classifica-
tion method.

2.3 Susceptibility index determination

Once the causal factors were finally selected for each land-
slide type, the conditional analysis allowed obtaining a num-
ber of vUCUs from all of the possible selected factor combi-
nations in the study area. Thesusceptibility indexfor each
vUCU (used to draw up the susceptibility maps for each
considered landslide type) was successively calculated us-
ing the Bayesian interpretation of probability. The impor-
tance of applying conditional probability models has been
strongly emphasized in the earth sciences literature, espe-
cially for predicting hazardous events or mapping mineral
potential (Bonham-Carter et al., 1989), and was then ap-
plied by several authors for landslide susceptibility evalua-
tion (Chung and Fabbri, 1999; Irigaray et al., 1999; Clerici
et al., 2006, 2010; Ẑezere et al., 2005; Conoscenti et al.,
2008). The Bayes rule allows the probability of future land-
slide events to be predicted once the area of each vUCU af-
fected by past landslides is known. The Bayes rule specifies
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a prior probability, which is then updated in light of new
relevant data (called “likelihood” in Bayesian theory). In
the study case, this means that the simple attribution of an
a priori determined probability has to be updated consider-
ing information on past events. Thus, thesusceptibility in-
dexcorresponds to the conditional (or posterior) probability
P (f |vUCU), which is the probability of the occurrence of a
landslide type given a certain combination of selected causal
factors (vUCU). If we consider as an example a vUCU de-
fined by the spatial combination of the areas pertaining to
two classes of two causal factorskg andjh (wherek andj

represent two causal factors, such as lithology and hillslope
aspect, and g and h represent single classes of the factors),
thesusceptibility indexis:

P(f |kg

⋂
jh) =

P(kg
⋂

jh|f )

P (kg
⋂

jh)
·P(f ) (2)

where:P(f ) = prior probability of landslides (f = ratio of
the study area presently characterized by landslides);

1
P(kg

⋂
jh)

= proportionality factor= 1/ratio of the study

area presently characterized by the concomitant presence
of kg andjh, in which the denominator indicates theprior
probability of the simultaneous presence of the two classes
of the factorsk and j (for example clayey outcrops for
lithology factor, and north-facing slopes for aspect factor);
P(kg

⋂
jh|f )= conditional probability(likelihoodor updated

value of probability) of the simultaneous presence of the two
classes of the factorsk andj, given the landslidesf = area
of intersection betweenkg, jh and area affected by land-
slidesf / total area presently characterized by landslides; and
P(f |kg

⋂
jh) = posterior probabilityof landslidesf , which

is proportional to theprior probability updated with thelike-
lihood.

The susceptibility index(Sindex) for eachi-th vUCU and
each landslide type can be computed more easily because it
corresponds to the ratio between the landslide area affecting
vUCUi (AfvUCUi) and the area of vUCUi(AvUCUi):

Sindex=
AfvUCUi

AvUCUi
(3)

TheSindex values for each vUCU indicate the probability of
the landslide type occurrence conditioned by the concomitant
presence of the selected causal factor categories.Sindex of a
vUCU may be expressed by a percentage, thus theoretically
ranges between 0 and 100 %, where 100 % is the maximum
probability of a landslide event, given by the complete cov-
erage of the vUCU by landslides.

2.4 Validation procedure

We applied the method by Chung and Fabbri (2003) in order
to choose the most meaningful among the obtained suscepti-
bility maps for each landslide type. This method provides for
a chronological or spatial partition of the landslide database

into a training subsetand atest subset(Fig. 1), consider-
ing the second one as the unknown future target pattern of
landslides. The same susceptibility procedure previously ap-
plied to the whole landslide inventory must be applied to the
only landslidetraining subset, thus obtaining atraining sus-
ceptibility mapfor each considered landslide type. Finally
the distribution of thetestlandslidesubsetis compared with
the training susceptibility maps. For each landslide type, by
intersecting eachtraining susceptibility map(obtained using
the onlytraining subset) with the landslides of thetest subset,
it is possible to construct theprediction-rate curve, while the
success-rate curveis elaborated by comparing each suscep-
tibility map (obtained by considering the whole set of each
landslide type) with the distribution of all the landslides that
have been used to obtain this map (Fig. 1). Since we propose
to use vector layers, the curves are constructed by plotting
the cumulative area of vUCUs ordered by decreasingSindex
values (x-axis) versus the cumulative area affected by land-
slides within each vUCU (y-axis).

As it is generally assumed that future landslides will occur
in the same conditions that provoked the already occurred
ones in the same area, thesuccess-rate curvemeasures the
model fitness, assuming that the model is correct. On the
other hand, theprediction-rate curveprovides a measure of
the predictive capability of the model. Ideally, the tangent of
a prediction-rate curveshould be monotonically decreasing,
to indicate that the most hazardous classes predict most of the
“future” landslides, and the trend regularly decreases with
the gradual reduction of the susceptibility value. However, as
described by Chung and Fabbri (2003), empiricalprediction-
rate curvesusually do not satisfy this condition. A 1:1 trend
of the prediction-rate curve indicates that the prediction map
is randomly generated. Thus, the further the prediction-rate
curve is from a straight line, the more the susceptibility esti-
mation is significant. Moreover, the steeper the curve is in its
first part, the greater the predictive power of the prediction
map (Remondo et al., 2003).

3 Landslide susceptibility evaluation for the Upper
Orcia Valley

The landslide susceptibility method was applied in the Up-
per Orcia Valley, which is the easternmost portion of the
Ombrone River basin (Fig. 3). The area is located in the
Tuscan Pre-Apennines, close to Siena, north of Radicofani,
and it covers about 120 km2, with an altitude ranging from
about 350 to 1148 m a.s.l. (Mt. Cetona). The drainage pat-
tern and catchment shape are structurally controlled by the
regional morphostructure of the Radicofani Graben (Baldi et
al., 1994; Carmignani et al., 1994), whose major axis is ori-
ented NW-SE. The location of the Orcia River basin southern
divide, which corresponds to the boundary between the Te-
vere River and Ombrone River basins, is controlled by the
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Figure 3: Location of the study area and geological sketch of the Tyrrhenian side of central Italy: 1) 2 

Quaternary volcanic rocks; 2) Quaternary undifferentiated continental deposits; 3) Plio-Pleistocene 3 

terrigenous marine deposits and Messinian evaporites; 4) sedimentary and metamorphic units of 4 

Ligurian and sub-Ligurian nappes (Trias to Lower Cretaceous); 5) sedimentary and metamorphic 5 

units of Tuscan nappe (Paleozoic to Miocene); 6) Normal fault; 7) Overthrust and reverse fault; 8) 6 

Undetermined fault; 9) Watershed; 10) Study area. 7 

Fig. 3. Location of the study area and geological sketch of the Tyrrhenian side of central Italy: (1) Quaternary volcanic rocks; (2) Quaternary
undifferentiated continental deposits; (3) Plio-Pleistocene terrigenous marine deposits and Messinian evaporites; (4) sedimentary and meta-
morphic units of Ligurian and sub-Ligurian nappes (Trias to Lower Cretaceous); (5) sedimentary and metamorphic units of Tuscan nappe
(Paleozoic to Miocene); (6) normal fault; (7) overthrust and reverse fault; (8) undetermined fault; (9) watershed; (10) study area.

Monte Cetona horst and the Monte Amiata and Radicofani
Quaternary volcanoes.

3.1 Geological, climatic and geomorphological features

The geological evolution of the study area is responsible for
widespread outcrops of lithological units prone to denuda-
tion (Fig. 3). The emplacement of the Apennine orogenic
wedge (Oligocene to Tortonian) led to the formation of ma-
jor morphostructures oriented mainly NW-SE and made up
of sedimentary sequences (Umbria-Marche sequence, Tus-
can Nappe, Ligurian and Subligurian Nappe) overthrusted
towards the NE (Buccolini et al., 2010). The later collapsing
phase started in the Late Miocene, and the extensional tecton-
ics, affecting the Tyrrhenian margin of the Italian peninsula,
activated several NW-SE-striking normal faults that defined a
system of horsts and grabens (Baldi et al., 1994; Carmignani
et al., 1994) cut by SW-NE transfer faults. A marine trans-
gression led to the deposition of a Plio-Pleistocene sequence
of clay, sands, and conglomerates within the major depres-
sions: Radicofani Graben, Val di Chiana Graben, and Te-
vere Graben. Inland, the extensional basins are filled with
lacustrine to fluvio-lacustrine continental deposits. During
the Quaternary, the Plio-Pleistocene marine deposits were
uplifted to several hundreds of meters above the present sea
level (Liotta, 1996). This strong uplift was related to plu-
ton emplacement and widespread volcanic activity along the

Tyrrhenian side (Acocella and Rossetti, 2002), evidenced by
the alignment of many volcanic complexes. Quaternary up-
lift has been particularly strong along the southern margin of
the Radicofani Graben, where locally marine deposits crop
out at 900 m a.s.l. (from the Mt. Amiata-Radicofani neck, on
the western side, to Mt. Cetona on the eastern slope of the
study area) and was responsible for the slight tilting of these
deposits towards the NE in the Upper Orcia Valley.

Climate data from the 1951–1996 records at several signif-
icant stations within the eastern Ombrone River Basin indi-
cate that the mean annual rainfall (696 mm) is below the na-
tional average (970 mm a−1), although its values during the
considered time span are discontinuous. Rainfall is heav-
ier in the colder half of the year than in the summer, with a
maximum in November and a minimum in July. The most
consecutive rainy days are recorded in autumn. The mean
annual temperature is around 14◦C, and the thermal regime
indicates an annual range of about 18◦C, with a maximum
in July.

The variety of outcropping lithologies and the tectonic
control led to the development of structural landforms. The
major landforms are represented by morphostructural ridges
bounded by NW-SE-trending fault scarps, dipping towards
the graben depressions. Minor morphotectonic elements
(e.g., straight channels, saddles, straight ridges) are aligned
along (and controlled by) the other structural patterns. How-
ever, the study area is characterized by hilly landscapes,
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with elevations rarely higher than 1000 m a.s.l., due to the
widespread outcrops of soft sediments. Fluvial erosion, to-
gether with slope denudation, contributes significantly to the
morphogenesis. A lot of slopes are rapidly evolving, and the
rivers show high suspended sediment load. Water erosion
is pervasive, due to extensive clayey outcrops as well as to
the current climatic conditions and the rapid uplift, leading
to typical sharp- and rounded-edged badlands, locally called
calanchiandbiancane, respectively (Della Seta et al., 2009,
and references therein).

Landslides provide the major contribution to slope de-
nudation, together with water erosion (Della Seta et al., 2009;
Ciccacci et al., 2008), so that they supply a considerable
amount of material to be transported by the major rivers.
Apart from some rock falls, earth slumps and earth slides
occur on steep slopes. However, the influence of gravity is
also evident on gentler slopes, where mud flows, soil creep
and solifluction are widespread. Due to these prevailing mor-
phogenetic processes, gently undulating slopes characterize
the landscape.

Human activity has significantly affected the landscape
for a long time. Deforestation, grazing, and farming are
among the most important triggers for accelerated water ero-
sion, tillage erosion, and gravitational movements on slopes.
Moreover, the effects of farming may become stronger if
there are land-use changes related to cropland abandonment.

3.2 Landslide inventory map

The landslide inventory map (Fig. 4) has been drawn up
at the scale of 1:10 000 through geomorphological field
surveys and the interpretation of 1988–1989 aerial pho-
tographs (Volo Italia, performed by Compagnia Generale
Ripreseaeree S.p.A. at a scale of about 1:70 000), and
1993 aerial photographs of Regione Toscana (performed by
C.G.R. S.p.A., scale 1:30 000). This multi-temporal inter-
pretation also allowed the temporal division of the landslide
database into two subsets in order to perform the validation
procedure.

The Upper Orcia River valley slopes are widely affected
by landslides, solifluction, and creep. According to the land-
slide classification of Cruden and Varnes (1996), we con-
sidered the most frequent typologies of landslides, which
are mud flows (MF), earth slumps (ES) and complex land-
slides (CL). Moreover, we used the term shallow mass move-
ments (SM) to represent a fourth category that consists of
portions of hillslopes affected by solifluction and very small
and frequent mud flows, and whose extent is not mappable at
the study scale (1:10 000). These landforms were mapped af-
ter field survey, thus they lack the temporal information. We
discarded rock fall landslides and earth slides because they
are too few and small to be significant for the statistical anal-
ysis of susceptibility. It is noteworthy that all the detected
and mapped landslides are recent and active and thus compa-
rable to the time scales of all of the considered factors.

All landslide types were mapped and digitized in a GIS
environment as vector datasets. For the same type of land-
slide, we ran the susceptibility evaluation model twice, using
first the depletion zones and then an outer buffer from deple-
tion zones. For the study case, we discarded the possibility
of using a buffer size proportional to the landslide extent and
considered as significant a fixed buffer of 50 m. In fact, pro-
portional buffers would have caused the smallest ones to be
not significant with respect to the resolution of the input data
and the largest ones to include too much spatial variability
of the causal factor values. We removed the portion of the
buffer areas passing over the divide line and dissolved the
buffer polygons when intersecting each other.

We used both depletion and buffer areas for all the land-
slide types, except for SM. In fact, for SM we considered the
whole instable areas because detachment and accumulation
zones are not detectable at the spatial and temporal scales of
the study. Figure 4 shows the 50 m outer buffer areas from
the depletion zones, the accumulation zones and the detach-
ment zones for the considered landslide types, as well as the
extent of the datasets used for susceptibility and validation
analyses.

MF are very frequent in the study area due to the
widespread outcrops of clays (Fig. 5a). As observed dur-
ing the monitored time span, these flows can be reactivated
several times in one year, especially during the winter half-
year, although intensive agricultural activity has recently and
frequently leveled these landforms (Della Seta et al., 2009;
Ciccacci et al., 2008). Small but frequent MF have been ob-
served on badlands slopes or where the bare clayey bedrock
crops out.

ES are frequent in the eastern part of the study area and
sometimes show considerable extent (Fig. 5b). Although an-
thropogenic actions have tried to mitigate the effects of land-
slides, these processes are so strong that, just 24 or 48 h after
a rainstorm, significant modifications of the topographic sur-
face appear on slopes. ES often evolve to earth flows towards
the toe, giving rise to CL (Fig. 5c).

SM produce typical lobes and irregular surfaces on hill-
slopes (Fig. 5d), even if showing gentle slope, especially
those affected by deforestation. The same hillslopes are af-
fected by small and frequent mud flows, often leveled by
farmers. These landslides are difficult to map because sur-
face running waters rapidly reshape the surface. In these
cases, we mapped the portions of slopes affected, on the
whole, by SM.

We decided to apply the susceptibility evaluation proce-
dure separately for each landslide type since in the area the
occurrence of different landslide types can produce very dif-
ferent effects on hillslopes: MF (Fig. 4a) generally cause
long and narrow surface landslide bodies, ES (Fig. 4b)
are deeper, involving large volumes of material, and SM
(Fig. 4d) are not single gravitational landforms but rather in-
stability events affecting entire portions of hillslopes. As for
CL, they generally provoke an elongation of the deposits at
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Figure 4: Landslide inventory maps. For each landslide type, the deposit, the depletion zone and 2 

the 50 m outer buffer area from the depletion zone are shown. Total area and mean extent of each 3 

landslide type are listed in the table. 4 
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Fig. 4. Landslide inventory maps. For each landslide type, the deposit, the depletion zone, and the 50 m outer buffer area from the depletion
zone are shown. Total area and mean extent of each landslide type are listed in the table.

their toe (Fig. 4c) and were, thus, considered separately from
ES for the susceptibility analysis.

3.3 Potential causal factors

We chose six potential causal factors as suitable in account-
ing for the physiographic conditions of the study area, and
mapped their spatial distributions, as shown in Fig. 6. The
values of each variable have been classified, and, for each
landslide type, the fraction of the total landslide area within
each factor class was evidenced in histograms. For clarity
of the outputs, we decided to work with vector data, so each
raster layer, derived from a DTM with a resolution of 25 m,
was converted to a vector dataset. The DTM was constructed
from digitized point elevation and contour lines of the 1994
topographic maps at scale 1:10 000 of Regione Toscana and
from it we derived the terrain analysis parameters slope, as-
pect and amplitude of relief.

3.3.1 Slope (S)

The slope map (Fig. 6a) was derived from the 25 m cell-sized
DTM, using the analysis tools in ArcGIS 3-D-Analyst. The
output raster was aggregated (nearest-neighbor re-sampling
technique) to a 50 m cell-sized grid, to avoid the excessive
fragmentation of the vUCUs.S-values were grouped into
six classes using the Jenks (natural breaks) method, and the
raster dataset was converted to a vector format. Classes from
1 to 4 are all widespread within the study area (16 % to 26 %),
whereas classes 5 and 6 cover, respectively, 6.8 % and 1.5 %
of the area and are concentrated where the most coherent
lithologies crop out.

The distribution of depletion zones inS-classes (Fig. 6a)
seems to be gaussian, with some differences in the mode,
depending on the landslide type: MF and SM have their mode
in class 3, ES are more concentrated in class 4, and CL are
very frequent in both classes 3 and 4. The distribution of
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Figure 5: Examples of the mass movements widespread in the study area: a) mud flow; b) earth 2 

slump; c) complex landslide (earth slump evolving into a mud flow); d) shallow mass movements. 3 
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Fig. 5. Examples of the landslide types widespread in the study area:(a) mud flow; (b) earth slump;(c) complex landslide (earth slump
evolving into a mud flow);(d) shallow mass movements.

the outer buffer areas from depletion zones shows a similar
distribution, but with smaller frequency differences among
theS-classes.

3.3.2 Aspect (A)

The aspect map (Fig. 6b) was derived using the terrain anal-
ysis tool in GIS environment. The 50 m cell-size raster out-
put was classified into five groups ofA (flat, N, S, E, W).
The horizontal areas do not have significant extent, while the
other classes are all well distributed in the study area. ES
show a progressive increase in frequency, going clockwise
from the N class to the W class. The frequency of CL also
shows a maximum on west-facing slopes, even if they also
occurred on northeast-facing slopes. This can be understood
considering the structural influence related to the right slope
of the Upper Orcia Valley. MF are preferentially concen-
trated on the north- and east-facing slopes (generally corre-
sponding to dip slopes) and show the lowest frequency on
west- and south-facing slope, such as SM. These distribu-
tions can be explained considering that the development of
MF needs wetter conditions, even if the relationship between
landslides andA is also conditioned by other factors.

3.3.3 Amplitude of relief (AR)

The amplitude of relief map (Fig. 6c) represents the maxi-
mum difference in height per unit area and was derived by
raster calculations from the DEM in ArcGIS. We decided to
visualize the results using contour lines and to derive from
them a polygonal vector dataset, which was classified using
the natural breaks method. This parameter provides a mea-
sure of fluvial erosive action. It was verified that, other con-
ditions being equal, the spatial distribution of this parameter
can provide information about vertical displacements (e.g.
local fault activity or regional uplift) (Della Seta et al., 2004).

As shown in Fig. 6c, the highest AR-values are clus-
tered along the basin’s northeastern divide, where the west-
ern flank of the Castelluccio-Mt. Cetona horst is bounded by
fault scarps.

Although the lowest classes of this factor are widespread
in the area, ES are concentrated in class 4. On the other hand,
AR-factor does not seem particularly significant in MF dis-
tribution, which is quite homogeneous in classes 2, 3, and 4.
The distribution of CL indicates an intermediate behaviour,
while SM are more frequent in classes 3 and 4. Concerning
the buffer area, ES, MF, and CL have a frequency distribution
similar to that of the depletion zone, but for the AR-factor,
the differences among the frequencies in the factor classes
are less relevant.
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 1 

Fig. 6. (a, b)Thematic maps showing the spatial distribution of potential causal factors for landslides:(a) Slope (S); (b) Aspect (A); (c)
Amplitude of Relief (AR);(d) Drainage density (D); (e) Land Use (LU);(f) Lithology (L). The values of each variable were classified and,
for each landslide type, the fraction of the total landslide area within each factor class is reported in the histograms.

3.3.4 Drainage density (D)

The drainage density map (Fig. 6d) was derived by calculat-
ing the cumulative length of stream segments of the drainage
network digitized from 1:25 000 topographic maps falling
within unit areas of 1 km2. As for the AR map, we decided
to visualize the map using contour lines and to derive from
them a polygonal vector dataset classified into equal inter-
vals ofD (2.5 km km−2). D is a parameter which indirectly
accounts for the erodibility and permeability of outcropping

rocks, the degree of tectonization, the vegetation cover, the
slope gradient, and the mean annual raifall in the drainage
basin. More than 50 % of the study area is characterized by
high or very highD-values (between 5 and 12.5 km km−2),
due to the widespread outcrop of clays (73 % of the total
area). Moreover, the heads of several catchments are affected
by badlands, where runoff is absolutely dominant with re-
spect to infiltration.

Most of the ES fall in class 2 of this factor, highlighting
that they are preferentially concentrated where infiltration is
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Fig. 6. (c, d) Thematic maps showing the spatial distribution of potential causal factors for landslides:(a) Slope (S); (b) Aspect (A); (c)
Amplitude of Relief (AR);(d) Drainage density (D); (e) Land Use (LU);(f) Lithology (L). The values of each variable were classified and,
for each landslide type, the fraction of the total landslide area within each factor class is reported in the histograms.

considerable. On the other hand, MF and SM are favored by
higher values ofD (maximum frequency in class 3), while
CL do not seem to be much influenced by this factor. Con-
sidering the buffer area distribution with respect toD-values,
the frequency of MF in the highestD-classes appears en-
hanced.

3.3.5 Land use (LU)

The land use map (Fig. 6e) was drawn up after the interpreta-
tion of 2004 digital orthophotos (Volo Siena 2004, at a scale
of about 1:7500) and field surveys. We used and simplified

the Corine Land Cover legend (1st, 2nd, and 3rd levels; EEA,
2007), as indicated in Table 1. For the susceptibility analy-
sis, we excluded the areas occupied by lakes and stream beds
permanently filled by waters, that are not as useful for the
susceptibility evaluation. The density of landslides within
each LU-class shows a maximum frequency in the three more
frequent classes (arable lands, untilled lands, and hardwood
natural forests). In particular, ES occur especially on forest-
covered slopes, MF on arable lands, and SM and CL on nat-
ural grasslands.
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Figure 6: Thematic maps showing the spatial distribution of potential causal factors for landslides: 2 

a) Slope (S); b) Aspect (A); c) Amplitude of Relief (AR); d) Drainage density (D); e) Land Use 3 
Fig. 6. (e, f) Thematic maps showing the spatial distribution of potential causal factors for landslides:(a) Slope (S); (b) Aspect (A); (c)
Amplitude of Relief (AR);(d) Drainage density (D); (e) Land Use (LU);(f) Lithology (L). The values of each variable were classified and,
for each landslide type, the fraction of the total landslide area within each factor class is reported in the histograms.

3.3.6 Lithology (L)

The lithological map (Fig. 6f) was drawn up by grouping the
outcropping rocks according to their response to denudation
processes, as summarized in Table 2. The geological setting
of the area is well known, and the rock units reported in the
existing geological map have been grouped into eight litho-
logical units.

Figure 6f also shows the frequency of each landslide type
in eachL-class. This distribution is obviously influenced by
the extent of outcrops in the study area (clayey deposits cover
about 73 % of the Upper Orcia river basin, while volcanic
rocks only crop out on the Radicofani neck, which is sta-
tistically meaningless for the study area). Nevertheless, we
included this factor in the susceptility assessment procedure,
since the selection method is conceived precisely in order to

Nat. Hazards Earth Syst. Sci., 11, 1475–1497, 2011 www.nat-hazards-earth-syst-sci.net/11/1475/2011/



F. Vergari et al.: Landslide susceptibility assessment in the Upper Orcia Valley 1487

Table 1. Classification of Corine Land Cover units in land use
classes.

Land use units Corine land cover units

1. Artificial surfaces 1 (artificial surfaces)

2. Agricultural areas 2.1 (arable land)
2.3 (pastures)
2.4 (heterogeneous agricultural areas)

3. Permanent crops 2.2 (permanent crops)

4. Forest and semi- 3.1.1 (broad-leaved forests)
natural areas 3.2.4 (transitional woodland scrub)

5. Reafforestation areas 3.1.2 (coniferous forests)

6. Shrubby and/or 3.2.2 (moors and heathlands)
herbaceous 3.2.1 (natural grassland)
vegetation areas 3.3 (open spaces with little or)

no vegetation
(LU); f) Lithology (L). The values of each variable were classified and, for each landslide type, the 1 

fraction of the total landslide area within each factor class is reported in the histograms. 2 

 3 

 4 

Fig. 7. Lorenz curves for each causal factor and each landslide type.
Different curves are computed for depletion zones (or the whole
area affected by shallow mass movements) and for the 50 m outer
buffer areas.

quantify the capability of the factors to discriminate the spa-
tial distribution of the landslides. Examining the density of
the depletion zones in the differentL-classes, it can be stated
that MF and SM preferentially develop on clay and sandy
clay, while ES are homogeneously distributed over conti-
nental deposits, conglomerate, clay, sandy clay, and flysch
deposits, but always on steep slopes. CL mostly developed
on clay and sandy clay and on dolomitic limestone. Similar
frequency of buffer areas and depletion zones was observed
over the classes of this causal factor.

3.4 Factor selection

For the study case, we noted that a minimum of 2 and a max-
imum of 4 slope causal factors had to be selected for the sus-
ceptibility analysis. In fact, since the extent of the study area
is of about 120 km2, we calculated that the intersection of
more than 4 factors (each one reclassified in no less than 5
categories) resulted in vUCUs with an extent comparable to
the factor map resolution and thus not statistically significant
(Clerici et al., 2010).

Figure 7 shows the Lorenz curves for the considered land-
slides, while Fig. 8 shows the histograms of the obtainedG-
values for each landslide type, the matrix of the degree of
association/correlation between the pairs of factors, and the
tables indicating the factors finally selected for each land-
slide type. Only a few pairs of factors have relatively higher
absolute values of correlation: in particular,S and AR (Pear-
son correlation of 0.48), AR andD (Pearson correlation of
−0.36), andD andL (η2 index value of 0.29).

The most influential factor for MF isA (G value of 0.395,
Fig. 7) using depletion zones, because they are greatly clus-
tered on the north and east-facing slopes, as shown in Fig. 6b.
Land use was always discarded, since MF are widespread
in arable lands, semi-natural areas, and shrubby and herba-
ceous vegetation lands, which are also the three most fre-
quent classes of this factor. Moreover, by using the deple-
tion zones, theS, AR, A, andL-factors were selected, while,
when using the MF buffer areas, only factorsD andA were
finally selected, and the other factors related to the topogra-
phy were discarded. This discrepancy was also observed for
other landslide types. In order to discuss this apparent con-
tradiction (same study area, same type of landslide, differ-
ent influencing factors), we noted that the failure occurrence
generally causes strong topographic modifications in corre-
spondence of the depletion zones with respect to the general
slope morphology. As a consequence, the topographic pa-
rameters become more distinctive for the depletion zones,
and generally less effective in estimating the probability of
a landslide type event when we consider buffer areas. More-
over, in the same example,L was discarded andD was se-
lected, which makes sense, considering that the variability of
D reflects changes in lithological features. So the indirect
influence of lithology was included even ifL was discarded.
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Figure 7: Lorenz curves for each causal factor and each landslide type. Different curves are 1 

computed for depletion zones (or the whole area affected by shallow mass movements) and for the 2 

50 m outer buffer areas. 3 
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Figure 8: Histograms of the Gini coefficient value distribution for each landslide type obtained 6 

after the spatial intersection between each causal factor map and each landslide type map. The 7 

matrix of association/correlation degree between pairs of factors and the tables indicating the 8 

factors finally selected for each landslide type are shown. 9 

Fig. 8. Histograms of the Gini coefficient value distribution for each landslide type obtained after the spatial intersection between each causal
factor map and each landslide type map. The matrix of association/correlation degree between pairs of factors and the tables indicating the
factors finally selected for each landslide type are shown.

In the case of ES, the potential influencing factors gener-
ally show higherG-values (0.414 to 0.637 using depletion
zones and 0.343 to 0.544 for the buffer areas). This suggests
that in the study area, ES generally clustered in specific fac-
tor classes because, with respect to MF or SM, they are less
closely linked to the clayey outcrops. Moreover, they are
more concentrated where high values of AR occur. When
considering ES buffer areas, the S-factor is discarded while
LU becomes very important because the outer buffer areas
from the depletion zones are clustered within forests (in most
cases, on slopes reforested to mitigate the effects of denuda-

tion). Together withL, also A was always discarded for
this landslide type. This suggests that ES in this area are
poorly linked to this terrain parameter: in fact, landslide sur-
vey of the area confirm that ES are not strictly associated
with north-facing slopes (wet soil conditions), as mud flows
do. Instead, they generally occur on coherent litologies, or
where weaker lithologies have sandy, gravel, conglomeratic,
or volcanic caprocks at the hillslope summit which help in
preserving high values of AR.

For CL susceptibility assessment,S, AR, L, and LU were
selected as causal factors when using depletion zones, while
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Table 2. Classification of Geological Units in Lithological classes.

Lithological units Geological units
(from Carta Geologica d’Italia, at the scale 1:100 000)

Quaternary continental deposit

Pebbly, sandy and clayey sandy alluvial deposits

Slope talus

Eluvium/colluvium – red shales – black shales

Volcanic rock Trachybasalt and olivinic andesite

Conglomerate
Polygenic puddingstone and sandstone

Polygenic puddingstone locally containing Cirripeds and Oysters

Sand
Sand and clayey sand

Sand and clayey sand with shells, pudding lenses and peat

Clay and sandy clay
Clay and sandy clay with pudding lenses and scattered pebbles

Interbeds of fossiliferous clay and sandy clay

Limestones Organogenic calcarenites

Flysch
Sandstone and siltstone

Clay, silty clay, marly clay with calcareous interbeds

Dolomitic limestone

Thin layered jasper variously colored and often weathered

White and gray layered limestone with chert nodules

Limestone and dolomitic limestone – marls and calcareous marls intercalated
to clay layers

Nodular reddish limestone and marly limestone – dolomitic limestone

Table 3. Number and mean extent of the vUCUs of each susceptibility zonation described in the text.

Landslide Slope instability Combined factors Number of Mean extent of the
type landform (defining vUCUs) vUCUs vUCUs (m2)

CL
depletion zone S, AR, L, LU 568 207 356.54
buffer AR,A, L 125 26 232 227.19

MF
depletion zone S, AR, A, L 567 207 722.25
buffer D,A 23 5 120 805.00

ES
depletion zone S, D, AR 126 934 750.12
buffer D, AR, LU 112 1 051 593.89

SM portion of hillslope D, AR, A 93 1 266 435.65
affected by SM

AR, A, andL were selected when using buffer areas. The
recurrent exclusion ofD for CL is reasonable, if we consider
that this landslide type usually occurs in variable conditions
of permeability, lithology and rock fracturing.

The most influential factors for the SM distribution areD,
AR, andA, similarly to those obtained for MF, except for
theS-factor, which does not strongly influence the presence

of this type of slope instability in the study area. This is
consistent with the abundance of small mud flows within the
SM type.

In the Upper Orcia Valley case, we did not need to exclude
a preselected factor using the correlation matrix because no
more than 4 factors ever showedG-values above the mean
(case b2 in Fig. 2b).
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To sum up, using depletion zones for the bivariate analysis
generally resulted in higherG-values than using buffer ar-
eas. Moreover, the analysis performed using the buffer areas
always led to the exclusion of theS-factor. These facts can
depend on the widespread levelling practices for agricultural
purposes, which have increased starting from the seventies
(thus before the occurrence of the majority of the mapped
landslides). These activities tend to rapidly smooth the natu-
ral roughness of the hillslope surface, thus causing the S fac-
tor to become less variable in space and not so discriminant
as a causal factor. Conversely, landslides occurring on these
surfaces generally cause S discontinuities in correspondence
of the depletion zones. Moreover,D parameter can increase
just after a landslide event, and then progressively decrease
with time. On the other hand,L, A, and AR-values should
not significantly change after a landslide event (if not very
large).

3.5 Susceptibility assessment

From the intersection of the selected factor maps and the
different landslide type inventories, seven vUCU maps have
been drawn up: four derived from the factors selected using
depletion zones, and the other three from the factors selected
using buffer areas, excluding the case of SM. The number
and mean extent of the vUCUs are summarized in Table 3.
The further overlay of each vUCU map with the correspond-
ing landslide map led to the processing of seven susceptibil-
ity maps, two for each landslide type (one using depletion
zones, the other using buffer areas, except for SM). These
maps are based on the conditional probability of each vUCU
to be affected by the occurrence of a landslide type event, as
shown in Fig. 9.

For each landslide type, the susceptibility index (Sindex)

corresponds to the conditional probability of future landslide
event, given the selected number of factors.Sindex values
were classified in a suitable number of categories and we de-
cided to use the same color scale for the seven susceptibility
maps in order to compare the obtained zonation maps and ex-
amine the relative distribution of susceptibility index values.

3.5.1 Susceptibility maps

The obtained susceptibility maps (Fig. 9) show the spatial
probability of future landslide events for each landslide type
in the study area. Most of the maps indirectly contain infor-
mation on the discarded causal factors, since the performed
factor selection was efficient in detecting the most discrim-
inant factors. This is the case of the ES susceptibility map
obtained using depletion zones that shows the maximum sus-
ceptibility in correspondence of outcrops of coherent litholo-
gies on the eastern ridge of Castelluccio-Mt. Cetona ridge,
even if factorL was discarded. In fact, the higherSindex
values have been caused by a combination ofD, AR, and
S-values clearly related to the outcrop of the most coherent
lithologies. MoreoverD, AR, andS contained an intrinsic

set of additional information that allowed estimating high
probability values: for example,D is strictly linked not only
to the permeability of rocks but also to the presence of vege-
tation cover and to the spatial distribution of the mean annual
rainfall. As well as for ES, also the MF susceptibility map
derived from buffer areas, even if having discarded theL fac-
tor, fits well the lithological outcrop distribution: the highest
Sindex values concentrate where clay or clayey sand crop out,
and particularly the town of Contignano results quite seri-
ously prone to this type of landslide, as well as to SM. More-
over, among the clayey slopes, the northeast-facing ones are
the most susceptible to MF, since they are also dip slopes.

However, the range ofSindex values is very different for the
landslides type maps, since the conditional probability val-
ues are sensitive to the number and to the extent of the map
units: in fact, the density of past landslides decreases with
the increase of the vUCU area. In the case study, the MF
susceptibility maps (Fig. 9) are characterized by lowSindex
values (<10 %), which can reflect the low lithological diver-
sity of slopes in the study area with a clear prevalence of clay
compared with the other lithologies, so that MF are likely to
occur on most of the slopes. But it must be outlined that the
MF area ratio within the vUCUs, and consequently theSindex
values, were underestimated since in the study area MF are
frequent and rapidly levelled by the intense agricultural ac-
tivity. Thus, many of them were not mapped or, especially
the smallest ones (not mappable at the scale 1:10 000), were
placed in the SM database. Nonetheless, the maps well ev-
idence the areas relatively most susceptible to future land-
slides.

The CL susceptibility map obtained using depletion zones
shows not very highSindex values for most of the area, apart
from some small regions with both clayey and quite steep
slopes, where the probability reaches the 33–45 %Sindex
class, located close to the western divide and in the surround-
ings of Mt. Calcinaio. Multivariate analysis showed that on
these slopes, not only reforestation failed to curb slope in-
stability processes, but the re-planted trees represented an
overload that favored landsliding. In fact, even if replant-
ing trees has decreased the mud flows occurrence and runoff
intensity, on the other hand they represented an overload on
the hillslopes that sometimes favored deeper landslides, as
ES and CL. In the case of this type of landslide, the map de-
rived from buffer areas provides less information about the
most susceptible areas because theSindex values are in a very
much narrower range (between 0 and 11 %).

The SM susceptibility map confirms thatA is the most in-
fluential factor for this type of landslide. In particular, SM
occur mostly on the wetter north-facing slopes, then prefer-
entially where AR andD show medium to high values. The
susceptibility map for this type of slope instability process
clearly show the wider extent of the higerSindex values, un-
derlining that these shallow mass movements represent a se-
rious threat for the stability of the arable and grazing lands in
Upper Orcia Valley.
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Fig. 9a. Susceptibility maps of the Upper Orcia Valley obtained through the conditional analysis for each landslide type. For each landslide
type, the susceptibility index (Sindex) values correspond to the conditional probability of the landslide event, given the selected number of
causal factors.Sindex values are classified in 11 intervals.

3.6 Validation

Since the landslide inventory was created using two different
sets of aerial photos (years 1988–1989 and 1994), a tempo-
ral subdivision of the dataset was made, with thetraining
subsetcontaining landslides that occurred before 1988 and
the test subsetcontaining landslides that occurred after the
same year, thus simulating an analysis performed in 1988.
Validation was not performed for the SM because temporal
information was not available (they were mapped after field
survey). Neither was a spatial partition possible for SM, be-

cause this type of landslide includes portions of hillslopes
affected by small and frequent mud flows, the latter periodi-
cally leveled by farmers and difficult to be mapped. So while
the extent of these areas is considerable, their number is not
high enough for a spatial partition.

The validation outlined thatsuccess-rate curvesobtained
from the analysis of buffer areas generally show lower ini-
tial steepness compared with the curves generated using the
depletion zones (Fig. 10). This can be explained consid-
ering the more specific terrain conditions of the depletion
zones, due to the strong modification generally determined
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 1 

Figure 9: Susceptibility maps of the Upper Orcia Valley obtained through the conditional analysis 2 

for each landslide type. For each landslide type, the susceptibility index (Sindex) values correspond to 3 

the conditional probability of the landslide event, given the selected number of causal factors. Sindex 4 

values are classified in 11 intervals. 5 

 6 

Fig. 9b. Susceptibility maps of the Upper Orcia Valley obtained through the conditional analysis for each landslide type. For each landslide
type, the susceptibility index (Sindex) values correspond to the conditional probability of the landslide event, given the selected number of
causal factors.Sindex values are classified in 11 intervals.

by landslide occurrence. Moreover, the buffer areas are not
always more representative of the environmental conditions
preceding the landslides. In fact, some gravitational move-
ments often occur in areas where other landslides already
took place and are thus characterized by post-event terrain
conditions. This is, for example, the case of new crowns de-
veloped upwards from older landslide scarps.

The bestsuccess-rate curvefor MF was the one generated
using the depletion zones (Fig. 10a). Even if the correspond-
ing prediction-rate curveis not monotonically decreasing, its
first part is considerably steep, indicating that the most haz-
ardous 6 % of the predicted area estimates the distribution of

29 % of the MF that occurred within the following 20 yr (af-
ter 1988). On the other hand, theprediction-rate curvegen-
erated using the buffer areas (Fig. 10b) indicates that the “fu-
ture” landslides are well estimated within the classes 0–25 %
and 60–100 %, so that the classes included in these intervals
are effective prediction classes.

Both thesuccess-rate curvesfor ES are very well shaped
(their steepness smoothly decreases monotonically; Fig. 10c,
d), while the correspondingprediction-rate curvesare not so
satisfying because the curve generated considering depletion
zones shows a discontinuous trend and that generated using
buffer areas is not very far from the 1:1 line, indicating a
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 1 

Figure 10: Prediction- and success-rate curves for mud flows, earth slumps and complex 2 

landslides, generated using the procedure proposed by Chung and Fabbri (2003) adapted for vector 3 

datasets. 4 

Fig. 10. Prediction-andsuccess-rate curvesfor mud flows, earth slumps, and complex landslides generated using the procedure proposed
by Chung and Fabbri (2003) adapted for vector datasets.

certain degree of randomness in the prediction results. This
finding can be explained by considering that thetest sub-
set for this type of landslide is not very large, thus produc-
ing some randomness in the probability estimation of future
events occurring in the areas predicted as hazardous using the
training subset. In this case, the best model should be chosen
only based on the bestsuccess-rate curve, which suggests se-
lecting the map prepared using the depletion zones (steeper
slope of thesuccess-rate curvein the initial part).

The validation curves for the CL susceptibility evaluation
show that the use of the depletion zone area is somewhat bet-

ter than that of the buffer areas because the initial steepness
of theprediction-rate curveis higher (Fig. 10e, f).

4 Discussion

Our contribution is focused on an unbiased causal factor se-
lection procedure when performing conditional analysis in
assessing landslide susceptibility. The obtained results con-
firm that the unbiased selection of controlling factors is a cru-
cial phase for landslide susceptibility evaluation. However,
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in the performance of the landslide susceptibility method pre-
sented here, the following tricky problems occurred, some of
which may be ascribed to our method, others affecting all
statistical approaches.

First of all, both the heuristic and the statistical choice
of causal factors require an a priori knowledge of the main
causes of landsliding, as the potential factors must be not
only spatially correlated with the distribution of landslides
but also in cause/effect relationships with them. This can
sometimes lead to the exclusion of variables spatially well-
correlated with landslide distribution but representing a land-
slide effect more than a cause for landslides. For the same
reason, factors that may vary in response to environmental
changes or economical needs, such as land cover, should
be used only if significant modification have not been ob-
served during the time interval considered for the landslide
inventory.

Once the potential factors have been correctly identified,
a further constraint of a successful landslide susceptibility
evaluation lies in their suitability for each study case: in fact,
each causal factor can be more or less discriminant in ex-
plaining the distribution of the same landslide type events in
different areas. Our procedure for factor selection provides a
useful tool to filter the right set of causal factors really caus-
ing landslides in each study area. To give an example, some
factors, such as lithology and slope, are the most frequently
considered in the international literature on landslide suscep-
tibility evaluation (Crozier, 1984; Guzzetti et al., 1999; Iri-
garay et al., 1999; Fernandez et al., 2003; Ayalew and Yam-
agishi, 2005). But in our study case, we demonstrated that
they are not really effective in explaining the distribution of
the occurred mud flows. In fact, clayey outcrop is the pre-
dominant lithology in the area (75 %). This implies that MF
buffer area distribution is not well explained by theL factor.
On the other hand,D was selected (Figs. 6d and 7), since
it indirectly accounts as well for geological (lithology, frac-
turing, permeability, etc.) and morphological (slope, shape,
and length of slopes, etc.) conditions characterizing the area
(Strahler, 1957), thus it better explains the present MF dis-
tribution thanL. At the same time,S was discarded when
considering MF buffer areas. This result does not mean that
S is not one of the most important factors generally trigger-
ing landslides, but that in the study case MF are uniformly
distributed on different classes ofS (Fig. 7) as confirmed by
field surveys.

To sum up, the applied susceptibility evaluation procedure
is useful in filtering, among the potential factors, the ones
really discriminant in inducing future landslides for a given
study area, especially when this is poorly known. At the
same time, it allows limiting the number of factors to be used
in conditional analysis, thus avoiding generating too small
and diverse map units. In fact, the smaller the map units are,
the less the landslide probability will be statistically signif-
icant for the same landslide inventory. Moreover, the factor
selection method, if combined with the study of correlation

between independent variables, does not result in the loss of
information, since the discarded factors are often indirectly
accounted for by other variables, as demonstrated by the ex-
clusion ofL in ES susceptibility analysis.

Some sources of uncertainty were detected in the model
performance, but most of them are common to all the land-
slide susceptibility statistical models. First of all, the quality
of the analysis strongly depends on the quality and resolu-
tion of the input data (landslide inventory and causal factor
maps) and of their representation in GIS environment. Land-
slide identification and mapping is an error prone procedure,
due to the scale-dependent minimum mappable unit, to the
lack of historical data, and to the degree of agricultural ex-
ploitation of slopes. In the study case, for example, the qual-
ity of mud flow inventory affected the landslide susceptibil-
ity assessment: in fact the area affected by mud flows in the
map units, and consequently the calculatedsusceptibility in-
dex, were surely underestimated since in the study area MF
are frequently and rapidly levelled for the intense agricultural
activity. In cases like this, a possible solution for improving
the results could be the introduction of a wider set of poten-
tial causal factors when applying our selection procedure in
order to search for factors with higherG-values. Moreover,
future outcomes could entail the use of some statistical pro-
cedure to associate an error to prediction results.

Another tricky step for a successful susceptibility evalua-
tion is the choice of the features to be used to represent the
occurred landslides in the inventory. The performed valida-
tion suggested some interesting remarks about the advisabil-
ity of using either depletion zones or outer buffer areas from
depletion zones as representative of the landslides. More
precisely, the results underlined that the choice is delicate
since, on one hand, buffer zones are more representative of
the conditions that preceded the landslide occurrence, but, on
the other hand, some gravitational movements can reactivate
some previously occurred ones. From this perspective, the
obtained validation curves did not allow performing a unique
choice for the study area. To this end, a possible development
could involve the detection (and separate analysis) of the re-
activated landslides.

5 Conclusions

The landslide susceptibility of the Upper Orcia Valley was
evaluated through an unbiased factor selection procedure,
followed by conditional analysis. The assessment was per-
formed for the most frequent landslide types and consider-
ing separately the landslides depletion zones and the outer
buffers from depletion zones. Different causal factors were
proved to have influence on each landslide type. Conditional
analysis allowed the zonation of conditional probability of
future landslide occurrence (Sindex). A validation procedure
was finally applied, in which a temporal subdivision of land-
slide inventory was performed. The results confirmed the
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efficiency of the selection procedure, which allowed using
few causal factors without losing information on the indirect
influence of the discarded ones. Even so, the applied suscep-
tibility assessment methodology is affected by some sources
of uncertainty, in particular those generally associated with
all the statistical approaches, for which the quality of the re-
sult is strongly sensitive to the quality of the input data.

In conclusion, the conditional analysis, preceded by a bi-
variate statistical analysis for causal factor selection, pro-
vided satisfactory results for the unbiased prediction of land-
slide susceptibility for the Upper Orcia Valley. The method
is conceptually simple but, at the same time, effective in eval-
uating the conditional probability of hazardous events given
a certain combination of causal factors. Even if the knowl-
edge of the study area is an important precondition for suc-
cessful susceptibility analysis, the proposed factor selection
procedure proved to be a useful tool for the unbiased detec-
tion of the factors really discriminant for landslides in the
study area, and can be very helpful when analyzing new ar-
eas. This procedure allowed us to overcome one of the lim-
its of the conditional analysis, which consists in the lack of
statistical significance of too small vUCUs generated by the
intersection of a large number of subjectively defined influ-
encing factors. The factor selection procedure proposed here
differs from others already suggested in the literature, which
provide for selecting the most significant factors after hav-
ing computed all of their possible combinations and having
tested the results. Our factor selection method makes the sus-
ceptibility analysis less cumbersome and simplifies the en-
tire procedure, since it provides for using simple statistical
indices. Moreover, the use of vector datasets allow to cre-
ate vector easy-to-read susceptibility maps in which the frag-
mentation generally characterizing raster outputs is avoided.
These characteristics make this susceptibility method easy to
understand and each resulting map easy to read, thus suitable
for policy makers in planning land management strategies.
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