6,591 research outputs found

    How Lightning Tortuosity Affects the Electromagnetic Fields by Augmenting Their Effective Distance

    Get PDF
    A novel approach for developing the electromagnetic fields from a lightning return stroke which follows a tortuous path will be presented. The proposed model is unique in that it recognizes that the symmetrical tortuosity of lightning directly impacts the observable distance r, which in turn, alters the resulting electromagnetic fields. In the literature, lightning return stroke models typically employ the assumption that the cloud-to-ground path is straight. Although this assumption yields fairly consistent results across an array of varying approaches, it does not account for lightning\u27s natural physical appearance. Furthermore, straight-line models only account for the cloud-to-ground discharges and do not address branching and/or cloud-to-cloud discharges which are far more common. In reality, the steps which make up the lightning channel\u27s initial descent are staggered or tortuous with respect to each other. Given this fact, the upward traveling current wavefront which follows this prescribed path will exhibit the same characteristics. In doing so, each current segment, which forms along its respective step, induces electromagnetic fields with angular aggregates that propagate outward from their origin. This, in turn, will generate spatial points where there are fields of higher and lower intensities. The results presented in this paper will show how the effective observable distance due to symmetrical tortuosity alters the resulting electromagnetic fields. Furthermore, it will be shown that as the observable distance r is increased, results from the proposed model closely resemble the straight-line model which strongly suggests that symmetrical tortuosity is only influential at relatively close distances

    Magnetic relaxation in finite two-dimensional nanoparticle ensembles

    Full text link
    We study the slow phase of thermally activated magnetic relaxation in finite two-dimensional ensembles of dipolar interacting ferromagnetic nanoparticles whose easy axes of magnetization are perpendicular to the distribution plane. We develop a method to numerically simulate the magnetic relaxation for the case that the smallest heights of the potential barriers between the equilibrium directions of the nanoparticle magnetic moments are much larger than the thermal energy. Within this framework, we analyze in detail the role that the correlations of the nanoparticle magnetic moments and the finite size of the nanoparticle ensemble play in magnetic relaxation.Comment: 21 pages, 4 figure

    Distinctive Features of Saccadic Intrusions and Microsaccades in Progressive Supranuclear Palsy

    Get PDF
    International audience; The eyes do not stay perfectly still during attempted fixation; fixational eye movements and saccadic intrusions (SIs) continuously change the position of gaze. The most common type of SI, square-wave jerks (SWJs), consists of saccade pairs that appear purely horizontal on clinical inspection: the first saccade moves the eye away from the fixation target, and after a short interval, the second saccade brings it back toward the target. SWJs are prevalent in certain neurological disorders, including progressive supranuclear palsy (PSP). Here, we developed an objective method to identify SWJs. We found that SWJs are more frequent, larger, and more markedly horizontal in PSP patients than in healthy human subjects. Furthermore, the loss of a vertical component in fixational saccades and SWJs was the eye movement feature that best distinguished PSP patients from controls. We moreover determined that, in PSP patients and controls, the larger the saccade the more likely it was part of a SWJ. Furthermore, saccades produced by PSP patients had equivalent properties whether they were part of a SWJ or not, suggesting that normal fixational saccades (microsaccades) are rare in PSP. We propose that fixational saccades and SIs are generated by the same neural circuit and that, both in PSP patients and in controls, SWJs result from a coupling mechanism that generates a second corrective saccade shortly after a large fixation saccade. Because of brainstem and/or cerebellum impairment, fixational saccades in PSP are abnormally large and thus more likely to trigger a corrective saccade, giving rise to SWJs

    Secure neighbor discovery in wireless sensor networks using range-free localization techniques

    Full text link
    Si una red inalámbrica de sensores se implementa en un entorno hostil, las limitaciones intrínsecas a los nodos conllevan muchos problemas de seguridad. En este artículo se aborda un ataque particular a los protocolos de localización y descubrimiento de vecinos, llevada a cabo por dos nodos que actúan en connivencia y establecen un "agujero de gusano" para tratar de engañar a un nodo aislado, haciéndole creer que se encuentra en la vecindad de un conjunto de nodos locales. Para contrarrestar este tipo de amenazas, se presenta un marco de actuación genéricamente denominado "detection of wormhole attacks using range-free methods" (DWARF) dentro del cual derivamos dos estrategias para de detección de agujeros de gusano: el primer enfoque (DWARFLoc) realiza conjuntamente la localización y la detección de ataques, mientras que el otro (DWARFTest) valida la posición estimada por el nodo una vez finalizado el protocolo de localización. Las simulaciones muestran que ambas estrategias son eficaces en la detección de ataques tipo "agujero de gusano", y sus prestaciones se comparan con las de un test convencional basado en la razón de verosimilitudes

    Infrared Excess in the Be Star Delta Scorpii

    Full text link
    We present infrared photometric observations of the Be binary system delta Scorpii obtained in 2006. The J,H and K magnitudes are the same within the errors compared to observations taken 10 months earlier. We derive the infrared excess from the observation and compare this to the color excess predicted by a radiative equilibrium model of the primary star and its circumstellar disk. We use a non-LTE computational code to model the gaseous envelope concentrated in the star's equatorial plane and calculate the expected spectral energy distribution and Halpha emission profile of the star with its circumstellar disk. Using the observed infrared excess of delta Sco, as well as Halpha spectroscopy bracketing the IR observations in time, we place constraints on the radial density distribution in the circumstellar disk. Because the disk exhibits variability in its density distribution, this work will be helpful in understanding its dynamics.Comment: 12 pages, 14 figures, to be published in PASP May 200
    • …
    corecore