104 research outputs found

    Constraining sub-seismic deep-water stratal elements with electrofacies analysis; A case study from the Upper Cretaceous of the Måløy Slope, offshore Norway

    No full text
    Electrofacies represent rock facies identified from wireline-log measurements, and allow extrapolation of petrophysical characteristics away from stratigraphic intervals that are calibrated to core. This approach has been employed to reduce uncertainty in the identification of the sub-seismic depositional elements in the late Cenomanian-Coniacian succession of the northern Måløy Slope, offshore Norway. Core logging permits identification of eleven distinct sedimentary facies that are grouped into four facies associations: FA A-turbidite sandstones, FA B-heterolithic siltstones and sandstones, FA C-debrites and FA D-slide and slump deposits. Each facies association is defined by a distinct combination of petrophysical characteristics, including porosity, density, gamma-ray, sonic and resistivity. Using neural network analysis, electrofacies are calibrated with sedimentary facies, thereby allowing us to map their thickness and stacking patterns within the studied deep-water succession. We demonstrate that this approach is particularly useful where the presence of glauconite makes the distinction between sandstone- from shale-rich units difficult using gamma-ray logs alone. Our results indicate that the succession of interest is dominated by debris flows and slide and slump deposits, which are commonly poorly imaged on seismic reflection datasets in the northern North Sea. The methodology presented here can aid the correlation of deep-water stratal elements at production and exploration scales in stratigraphic successions that have undergone similar burial histories.Furthermore, this method may help in the identification of mass flow deposits that are present in Upper Cretaceous deep-water systems of the North Sea

    Aspects of the breeding biology of Janaira gracilis Moreira & Pires (Crustacea, Isopoda, Asellota)

    Get PDF
    The biological aspects of incubating females of Janaira gracilis Mbreira & Pires, are described. The marsupium is formed by 4 pairs of oostegites arising from pereopods I-IV. The oostegites appear for the first time at the post-marsupial stage 7 (preparatory stage 1), growing successively at each moult until stage 9 (brooding stage 1), when they reach fully development. The sizes of the eggs increase with the body size of the females. The number of eggs, per female, is a linear function of the body volume, i.e., the fecundity increases with the female's body size. The number of eggs, embryos and juveniles decrease during the marsupial development. This decrease in brood number is higher between the last two marsupial stages, i.e., from stage C to D, than between the preceding marsupial stages. The average and overall brood mortality rate is of 38.95%.São descritos, no presente trabalho, vários aspectos relacionados à biologia de fêmeas grávidas de Janaira gracilis Moreira & Pires. O marsúpio é formado por 4 pares de oostégitos, que partem dos pereópodos I-IV. Os oostégitos, que surgem pela primeira vez no estádio 7 do desenvolvimento pós-marsupial (estágio preparatório 1), crescem nas sucessivas mudas, atingindo no estágio 9 (estágio reprodutor 1) seu pleno desenvolvimento. O tamanho dos ovos é proporcional ao tamanho das fêmeas. O número de ovos, por fêmeas, e proporcional ao volume das fêmeas, isto é, a fecundidade é mais elevada nos exemplares de maior comprimento. O número de ovos, embriões e jovens decresce com o desenvolvimento marsupial, sendo este decréscimo maior entre os dois últimos estágios marsupials (i.é., entre os estágios C e D) do que entre os estágios precedentes. A taxa média de mortalidade marsupial é de 38.95%

    Notes on the ecology and physiology of the Antarctic oribatid mite Maudheimia wilsoni

    No full text
    The oribatid mite Maudheimia wilsoni Dalenius was found to be numerous on the underside of stones at Jutulsessen (72°S, 3?E) in Dronning Maud Land, Antarctica. Daily temperature fluctuations of the microhabitat from as high as 19°C and to as low as – 17°C were observed during the austral summer. Optimal activity of the mites occurred at 10°C. Even in January the mean supercooling point of adult mites was as low as -30.8±4.7°C. Haemolymph osmolality ranged from 500 to 800mOsmol and thermal hystersis freezing points from ?4.7 to ?6.1°C. Adult mites had a mean water content of 43.6% and a water loss rate of 0.12 ?gh?1 at 15°C and 10% relative humidity

    Body water content and desiccation resistance in some arthropods from subantarctic South Georgia

    No full text
    The body water content and resistance to desiccation were studied in two perimylopid beetles, Perimylops antarcticus and Hydromedion sparsutum, a chironomid midge, Eretmoptera murphyi, and two spiders, Notiomaso australis and Perimaso grytvikensis from the subantarctic island of South Georgia. Comparisons were made between different species, different life stages and, where possible, between a high and a low altitude. Perimylops is abundant at higher elevations and in more exposed habitats (fellfields). This may be accounted for by its feeding behaviour, high body water content (relative to Hydromedion) and low rate of water loss under desiccating conditions, particularly in the larval stages. Hydromedion is more abundant at the lower collection site. It is a more robust beetle than Perimylops and its feeding preference is for plants such as grasses and Acaena. Nevertheless, at the upper site adult Hydromedion are able to withstand desiccation to an even greater degree than Perimylops. Water loss rates for both beetles are significantly higher than those reported for related beetles from arid and semi-arid regions. The ability to regulate water loss is not as apparent in the polar perimylopids Perimylops and Hydromedion as in related species from other xeric habitats. These two species, in fact, resemble more closely carabid beetles in xeric habitats in rates of water loss under controlled conditions. Increased temperatures elevate the rate of water loss significantly. South Georgia spiders have a similar rate of water loss to several species of spiders that have been studied in the temperate zone. Eretmoptera is restricted to moist conditions and cannot survive desiccating conditions even for brief periods. It has the highest body water content (78% of fresh weight) of all of the South Georgian arthropods studied. Among the spiders, sufficient information could be obtained only for Notiomaso. This species is much less resistant to desiccation than the perimylopid beetles, and it has a relatively high body water content. It is quite numerous in the lower, warmer habitats where its insect prey is more abundant and diverse

    Contrasting strategies of resistance vs. tolerance to desiccation in two polar dipterans

    Get PDF
    Low water availability is one of the principal stressors for terrestrial invertebrates in the polar regions, determining the survival of individuals, the success of species and the composition of communities. The Arctic and Antarctic dipterans Heleomyza borealis and Eretmoptera murphyi spend the majority of their biennial life cycles as larvae, and so are exposed to the full range of environmental conditions, including low water availability, over the annual cycle. In the current study, the desiccation resistance and desiccation tolerance of larvae were investigated, as well as their capacity for cross-tolerance to temperature stress. Larvae of H. borealis showed high levels of desiccation resistance, only losing 6.9% of their body water after 12 days at 98.2% relative humidity (RH). In contrast, larvae of E. murphyi lost 46.7% of their body water after 12 days at the same RH. Survival of E. murphyi larvae remained high in spite of this loss (>80% survival). Following exposure to 98.2% RH, larvae of E. murphyi showed enhanced survival at −18°C for 2 h. The supercooling point of larvae of both species was also lowered following prior treatment at 98.2% RH. Cross-tolerance to high temperatures (37 or 38.5°C) was not noted following desiccation in E. murphyi, and survival even fell at 37°C following a 12-day pre-treatment. The current study demonstrates two different strategies of responding to low water availability in the polar regions and indicates the potential for cross-tolerance, a capacity which is likely to be beneficial in the ever-changing polar climate

    How insects survive the cold: molecular mechanisms - a review

    Get PDF
    Insects vary considerably in their ability to survive low temperatures. The tractability of these organisms to experimentation has lead to considerable physiology-based work investigating both the variability between species and the actual mechanisms themselves. This has highlighted a range of strategies including freeze tolerance, freeze avoidance, protective dehydration and rapid cold hardening, which are often associated with the production of specific chemicals such as antifreezes and polyol cryoprotectants. But we are still far from identifying the critical elements behind over-wintering success and how some species can regularly survive temperatures below -20°C. Molecular biology is the most recent tool to be added to the insect physiologist’s armoury. With the public availability of the genome sequence of model insects such as Drosophila and the production of custom-made molecular resources, such as EST libraries and microarrays, we are now in a position to start dissecting the molecular mechanisms behind some of these well-characterised physiological responses. This review aims to provide a state of the art snapshot of the molecular work currently being conducted into insect cold tolerance and the very interesting preliminary results from such studies, which provide great promise for the future
    • …
    corecore