10 research outputs found

    The dynamics of reactive oxygen species in photodynamic therapy with tetra sulfophenyl-porphyrin

    No full text
    Photodynamic therapy (PDT) is a promising therapy especially in skin cancer, using the systemic administration of a photosensitizer (PS), followed by the local irradiation of the tumor with visible light. The antitumor effects of PDT are determined especially by the generation of cytotoxic reactive oxygen species (ROS). The 5,10,15,20-tetrasulfophenyl-porphyrin (TSPP) is a synthetic photosensitizer, which proved its efficiency in in vitro studies. Our study evaluates the effects of PDT with TSPP upon the tumor levels of ROS and upon the metalloproteinases 2 (MMP2) activities on Wistar male rats bearing 256 Walker carcinosarcoma in correlation with the accumulation of PS in the tumor and with the intratumor histological alterations. The evaluations were performed dynamically, at 3 hours, 6 hours, 24 hours and 14 days after the PDT with TSPP. Our results emphasize that 24 hours after the PDT with TSPP, the ROS generation increases, as revealed by protein carbonyls and malondialdehyde levels and the antioxidant capacity (hydrogen donors, thiol groups) decreases in the tumor tissue. These parameters were correlated with the appearance of the histological disorders. The MMP-2 activity increases exponentially in the 24 hours — 14 days post PDT interval. PDT with TSPP offers, in vivo, consistent results regarding ROS generation, MMP2 activation and cytotoxic capacity

    Possible in vivo mechanisms involved in photodynamic therapy using tetrapyrrolic macrocycles

    No full text
    Photodynamic therapy (PDT) mediated by oxidative stress causes direct tumor cell damage as well as microvascular injury. To improve this treatment new photosensitizers are being synthesized and tested. We evaluated the effects of PDT with 5,10,15,20-tetrakis(4-methoxyphenyl)-porphyrin (TMPP) and its zinc complex (ZnTMPP) on tumor levels of malondialdehyde (MDA), reduced glutathione (GSH) and cytokines, and on the activity of caspase-3 and metalloproteases (MMP-2 and -9) and attempted to correlate them with the histological alterations of tumors in 3-month-old male Wistar rats, 180 ± 20 g, bearing Walker 256 carcinosarcoma. Rats were randomly divided into five groups: group 1, ZnTMPP+irradiation (IR) 10 mg/kg body weight; group 2, TMPP+IR 10 mg/kg body weight; group 3, 5-aminolevulinic acid (5-ALA+IR) 250 mg/kg body weight; group 4, control, no treatment; group 5, only IR. The tumors were irradiated for 15 min with red light (100 J/cm², 10 kHz, 685 nm) 24 h after drug administration. Tumor tissue levels of MDA (1.1 ± 0.7 in ZnTMPP vs 0.1 ± 0.04 nmol/mg protein in control) and TNF-&#945; (43.5 ± 31.2 in ZnTMPP vs 17.3 ± 1.2 pg/mg protein in control) were significantly higher in treated tumors than in controls. Higher caspase-3 activity (1.9 ± 0.9 in TMPP vs 1.1 ± 0.6 OD/mg protein in control) as well as the activation of MMP-2 (P < 0.05) were also observed in tumors. These parameters were correlated (Spearman correlation, P < 0.05) with the histological alterations. These results suggest that PDT activates the innate immune system and that the effects of PDT with TMPP and ZnTMPP are mediated by reactive oxygen species, which induce cell membrane damage and apoptosis

    An Erbium -Ytterbium DFB laser with a simple and compact structure

    No full text
    A distributed feedback fiber (DFB) laser operating at 1540 nm having more than 45 dB signal to amplified spontaneous emission ratio with a simple and compact structure is introduced. The DFB laser consists of 45 mm long highly Er-Yb co-doped phosphate glass fiber with a grating structure inside the gain medium. The laser emission is stable, but the power is still relatively lower due to un-optimized grating structure

    Proceedings of the 23rd Paediatric Rheumatology European Society Congress: part one

    No full text
    corecore