727 research outputs found

    Universal Magnetic Fluctuations with a Field Induced Length Scale

    Full text link
    We calculate the probability density function for the order parameter fluctuations in the low temperature phase of the 2D-XY model of magnetism near the line of critical points. A finite correlation length, \xi, is introduced with a small magnetic field, h, and an accurate expression for \xi(h) is developed by treating non-linear contributions to the field energy using a Hartree approximation. We find analytically a series of universal non-Gaussian distributions with a finite size scaling form and present a Gumbel-like function that gives the PDF to an excellent approximation. We propose the Gumbel exponent, a(h), as an indirect measure of the length scale of correlations in a wide range of complex systems.Comment: 7 pages, 4 figures, 1 table. To appear in Phys. Rev.

    Ordered Phase of the Dipolar Spin Ice under [110]-Magnetic Fields

    Full text link
    We find that the true ground state of the dipolar spin ice system under [110]-magnetic fields is the ``Q=X'' structure, which is consistent with both experiments and Monte Carlo simulations. We then perform a Monte Carlo simulation to confirm that there exists a first order phase transition under the [110]-field. In particular this result indicates the existence of the first order phase transition to the ``Q=X'' phase in the field above 0.35 T for Dy2Ti2O7. We also show the magnetic field-temperature phase diagram to summarize the ordered states of this system.Comment: 4 pages, 5 figures, in RevTex4, submitted to J. Phys. Soc. Jp

    Finite size scaling in the 2D XY-model and generalized universality

    Full text link
    In recent works (BHP), a generalized universality has been proposed, linking phenomena as dissimilar as 2D magnetism and turbulence. To test these ideas, we performed a MC study of the 2D XY-model. We found that the shape of the probability distribution function for the magnetization M is non Gaussian and independent of the system size --in the range of the lattice sizes studied-- below the Kosterlitz-Thoules temperature. However, the shape of these distributions does depend on the temperature, contrarily to the BHP's claim. This behavior is successfully explained by using an extended finite-size scaling analysis and the existence of bounds for M.Comment: 7 pages, 5 figures. Submitted to Phys. Rev. Lett. Details of changes: 1. We emphasized in the abstract the range of validity of our results. 2. In the last paragraph the temperature dependence of the PDF was slightly re-formulate

    Competition Between Exchange and Anisotropy in a Pyrochlore Ferromagnet

    Full text link
    The Ising-like spin ice model, with a macroscopically degenerate ground state, has been shown to be approximated by several real materials. Here we investigate a model related to spin ice, in which the Ising spins are replaced by classical Heisenberg spins. These populate a cubic pyrochlore lattice and are coupled to nearest neighbours by a ferromagnetic exchange term J and to the local axes by a single-ion anisotropy term D. The near neighbour spin ice model corresponds to the case D/J infinite. For finite D/J we find that the macroscopic degeneracy of spin ice is broken and the ground state is magnetically ordered into a four-sublattice structure. The transition to this state is first-order for D/J > 5 and second-order for D/J < 5 with the two regions separated by a tricritical point. We investigate the magnetic phase diagram with an applied field along [1,0,0] and show that it can be considered analogous to that of a ferroelectric.Comment: 7 pages, 4 figure

    Observable Signature of the Berezinskii-Kosterlitz-Thouless Transition in a Planar Lattice of Bose-Einstein Condensates

    Full text link
    We investigate the possibility that Bose-Einstein condensates (BECs), loaded on a 2D optical lattice, undergo - at finite temperature - a Berezinskii-Kosterlitz-Thouless (BKT) transition. We show that - in an experimentally attainable range of parameters - a planar lattice of BECs is described by the XY model at finite temperature. We demonstrate that the interference pattern of the expanding condensates provides the experimental signature of the BKT transition by showing that, near the critical temperature, the k=0 component of the momentum distribution and the central peak of the atomic density profile sharply decrease. The finite-temperature transition for a 3D optical lattice is also discussed, and the analogies with superconducting Josephson junction networks are stressed through the text

    Magnetic Monopole Dynamics in Spin Ice

    Full text link
    One of the most remarkable examples of emergent quasi-particles, is that of the "fractionalization" of magnetic dipoles in the low energy configurations of materials known as "spin ice", into free and unconfined magnetic monopoles interacting via Coulomb's 1/r law [Castelnovo et. al., Nature, 451, 42-45 (2008)]. Recent experiments have shown that a Coulomb gas of magnetic charges really does exist at low temperature in these materials and this discovery provides a new perspective on otherwise largely inaccessible phenomenology. In this paper, after a review of the different spin ice models, we present detailed results describing the diffusive dynamics of monopole particles starting both from the dipolar spin ice model and directly from a Coulomb gas within the grand canonical ensemble. The diffusive quasi-particle dynamics of real spin ice materials within "quantum tunneling" regime is modeled with Metropolis dynamics, with the particles constrained to move along an underlying network of oriented paths, which are classical analogues of the Dirac strings connecting pairs of Dirac monopoles.Comment: 26 pages, 12 figure

    Persistent global power fluctuations near a dynamic transition in electroconvection

    Full text link
    This is a study of the global fluctuations in power dissipation and light transmission through a liquid crystal just above the onset of electroconvection. The source of the fluctuations is found to be the creation and annihilation of defects. They are spatially uncorrelated and yet temporally correlated. The temporal correlation is seen to persist for extremely long times. There seems to be an especially close relation between defect creation/annihilat ion in electroconvection and thermal plumes in Rayleigh-B\'enard convection

    Low Temperature Spin Freezing in Dy2Ti2O7 Spin Ice

    Get PDF
    We report a study of the low temperature bulk magnetic properties of the spin ice compound Dy2Ti2O7 with particular attention to the (T < 4 K) spin freezing transition. While this transition is superficially similar to that in a spin glass, there are important qualitative differences from spin glass behavior: the freezing temperature increases slightly with applied magnetic field, and the distribution of spin relaxation times remains extremely narrow down to the lowest temperatures. Furthermore, the characteristic spin relaxation time increases faster than exponentially down to the lowest temperatures studied. These results indicate that spin-freezing in spin ice materials represents a novel form of magnetic glassiness associated with the unusual nature of geometrical frustration in these materials.Comment: 24 pages, 8 figure

    Marketing a tourism industry in late stage decline: The case of the Isle of Man

    Get PDF
    Qualitative interviews in the Isle of Man uncovered local perceptions of a tourism industry in late stage decline. Social impacts of decline are pronounced including facilities loss, cultural changes and a heightening of perceived peripherality: which taken together undermine local identity. Tourists are welcomed as they help to affirm the pride residents have in their island in creating a more active atmosphere, provide social interaction opportunities and to combat negative stereotyping. Thus findings emphasise the diverse, unique and persistent benefits of tourism in the Isle of Man, despite its decline. Destination marketing recommendations are therefore made to better address the experiences and desires of communities experiencing decline

    1/f Noise and Extreme Value Statistics

    Full text link
    We study the finite-size scaling of the roughness of signals in systems displaying Gaussian 1/f power spectra. It is found that one of the extreme value distributions (Gumbel distribution) emerges as the scaling function when the boundary conditions are periodic. We provide a realistic example of periodic 1/f noise, and demonstrate by simulations that the Gumbel distribution is a good approximation for the case of nonperiodic boundary conditions as well. Experiments on voltage fluctuations in GaAs films are analyzed and excellent agreement is found with the theory.Comment: 4 pages, 4 postscript figures, RevTe
    • …
    corecore